Properties

Label 2-2200-5.4-c1-0-37
Degree $2$
Conductor $2200$
Sign $-0.447 + 0.894i$
Analytic cond. $17.5670$
Root an. cond. $4.19131$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.841i·3-s − 3.29i·7-s + 2.29·9-s + 11-s i·13-s − 1.15i·17-s − 1.31·19-s − 2.76·21-s − 3.84i·23-s − 4.45i·27-s − 6.61·29-s + 7.58·31-s − 0.841i·33-s + 2.13i·37-s − 0.841·39-s + ⋯
L(s)  = 1  − 0.485i·3-s − 1.24i·7-s + 0.764·9-s + 0.301·11-s − 0.277i·13-s − 0.281i·17-s − 0.302·19-s − 0.604·21-s − 0.800i·23-s − 0.856i·27-s − 1.22·29-s + 1.36·31-s − 0.146i·33-s + 0.350i·37-s − 0.134·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2200\)    =    \(2^{3} \cdot 5^{2} \cdot 11\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(17.5670\)
Root analytic conductor: \(4.19131\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2200} (1849, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2200,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.695538697\)
\(L(\frac12)\) \(\approx\) \(1.695538697\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 0.841iT - 3T^{2} \)
7 \( 1 + 3.29iT - 7T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 + 1.15iT - 17T^{2} \)
19 \( 1 + 1.31T + 19T^{2} \)
23 \( 1 + 3.84iT - 23T^{2} \)
29 \( 1 + 6.61T + 29T^{2} \)
31 \( 1 - 7.58T + 31T^{2} \)
37 \( 1 - 2.13iT - 37T^{2} \)
41 \( 1 - 6.13T + 41T^{2} \)
43 \( 1 + 8.81iT - 43T^{2} \)
47 \( 1 - 2.76iT - 47T^{2} \)
53 \( 1 - 10.1iT - 53T^{2} \)
59 \( 1 + 2.76T + 59T^{2} \)
61 \( 1 + 3.61T + 61T^{2} \)
67 \( 1 - 2.90iT - 67T^{2} \)
71 \( 1 - 0.866T + 71T^{2} \)
73 \( 1 + 5.87iT - 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 + 8.92iT - 83T^{2} \)
89 \( 1 + 14.2T + 89T^{2} \)
97 \( 1 + 12.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.745109717454729769172349570268, −7.80418605961448231127341287642, −7.27812224815290513623462610761, −6.65296554520355014180853088230, −5.79674480215247364044781467178, −4.49276643002314290319278834520, −4.10752048657570090405292238511, −2.88370535238925403701773969698, −1.61980154904718765735717831883, −0.61683622340671465032442653125, 1.49978720400721408222974511339, 2.53005724734626292415836899120, 3.65427173296242263932586772139, 4.45402248398471760919136810694, 5.34370269088374668260054891248, 6.08549524826472025108528216971, 6.92096099966049912824611246801, 7.86369149369627104516658922156, 8.644434284970468047269986188724, 9.465067053149660555416499797990

Graph of the $Z$-function along the critical line