Properties

Label 2-2200-1.1-c1-0-38
Degree $2$
Conductor $2200$
Sign $-1$
Analytic cond. $17.5670$
Root an. cond. $4.19131$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s − 11-s − 17-s + 19-s − 21-s − 5·27-s − 29-s − 31-s − 33-s − 37-s − 6·43-s − 8·47-s − 6·49-s − 51-s − 9·53-s + 57-s + 4·59-s − 7·61-s + 2·63-s + 4·67-s + 5·71-s − 14·73-s + 77-s + 4·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.301·11-s − 0.242·17-s + 0.229·19-s − 0.218·21-s − 0.962·27-s − 0.185·29-s − 0.179·31-s − 0.174·33-s − 0.164·37-s − 0.914·43-s − 1.16·47-s − 6/7·49-s − 0.140·51-s − 1.23·53-s + 0.132·57-s + 0.520·59-s − 0.896·61-s + 0.251·63-s + 0.488·67-s + 0.593·71-s − 1.63·73-s + 0.113·77-s + 0.450·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2200\)    =    \(2^{3} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(17.5670\)
Root analytic conductor: \(4.19131\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 5 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 7 T + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.580519583956297984476053749395, −8.067626362716954443627715811464, −7.18345754603087551811510544356, −6.33139829652756590557930908438, −5.52146859776575299727041460500, −4.61713300869887379449599275550, −3.47322344514721915206877877784, −2.87262970136492377618982254914, −1.75834286688676586500792984415, 0, 1.75834286688676586500792984415, 2.87262970136492377618982254914, 3.47322344514721915206877877784, 4.61713300869887379449599275550, 5.52146859776575299727041460500, 6.33139829652756590557930908438, 7.18345754603087551811510544356, 8.067626362716954443627715811464, 8.580519583956297984476053749395

Graph of the $Z$-function along the critical line