L(s) = 1 | + (−0.478 + 1.33i)2-s + (2.28 − 0.743i)3-s + (−1.54 − 1.27i)4-s + (0.809 + 0.587i)5-s + (−0.104 + 3.39i)6-s + (1.53 − 4.71i)7-s + (2.43 − 1.44i)8-s + (2.25 − 1.63i)9-s + (−1.16 + 0.795i)10-s + (−2.66 + 1.97i)11-s + (−4.47 − 1.76i)12-s + (0.446 + 0.614i)13-s + (5.54 + 4.29i)14-s + (2.28 + 0.743i)15-s + (0.760 + 3.92i)16-s + (−1.55 + 2.14i)17-s + ⋯ |
L(s) = 1 | + (−0.338 + 0.941i)2-s + (1.32 − 0.429i)3-s + (−0.771 − 0.636i)4-s + (0.361 + 0.262i)5-s + (−0.0426 + 1.38i)6-s + (0.578 − 1.78i)7-s + (0.859 − 0.510i)8-s + (0.750 − 0.545i)9-s + (−0.369 + 0.251i)10-s + (−0.802 + 0.596i)11-s + (−1.29 − 0.509i)12-s + (0.123 + 0.170i)13-s + (1.48 + 1.14i)14-s + (0.590 + 0.191i)15-s + (0.190 + 0.981i)16-s + (−0.377 + 0.520i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.944 - 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48778 + 0.250510i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48778 + 0.250510i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.478 - 1.33i)T \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (2.66 - 1.97i)T \) |
good | 3 | \( 1 + (-2.28 + 0.743i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-1.53 + 4.71i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.446 - 0.614i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.55 - 2.14i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.730 + 2.24i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 8.25iT - 23T^{2} \) |
| 29 | \( 1 + (2.81 + 0.915i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.03 - 5.54i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.119 + 0.367i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.54 + 0.826i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 4.07T + 43T^{2} \) |
| 47 | \( 1 + (-1.30 + 0.423i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.51 + 3.27i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (12.1 + 3.94i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.02 + 5.53i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 0.0695iT - 67T^{2} \) |
| 71 | \( 1 + (-9.22 + 12.7i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.13 + 1.02i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (0.948 - 0.688i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (1.79 + 1.30i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 9.02T + 89T^{2} \) |
| 97 | \( 1 + (11.6 - 8.44i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06352320053508030265970071685, −10.96911509291583063577226578741, −10.13987388155976024939351603318, −9.204258537047561690363113717632, −8.018864815245938071800547894217, −7.52450336992040622216120912567, −6.71393165598053133342708694002, −4.96130055507239827965535109454, −3.69470324510167727779705716799, −1.68325905157608750826784759236,
2.26720114673310848632125787792, 2.85893416084571325850330162329, 4.48924300063501911734850840226, 5.70556644661589246090367214330, 8.032602044275285093340444419186, 8.551780340112403005092922955333, 9.154940003541033023848503856673, 10.10178748790542630059140134725, 11.22617713773944432457329229821, 12.24392296603767026255277892440