L(s) = 1 | + (1 − i)2-s + (2 + 2i)3-s − 2i·4-s + (−1 − 2i)5-s + 4·6-s + (1 − i)7-s + (−2 − 2i)8-s + 5i·9-s + (−3 − i)10-s + i·11-s + (4 − 4i)12-s + (−4 + 4i)13-s − 2i·14-s + (2 − 6i)15-s − 4·16-s + (2 + 2i)17-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (1.15 + 1.15i)3-s − i·4-s + (−0.447 − 0.894i)5-s + 1.63·6-s + (0.377 − 0.377i)7-s + (−0.707 − 0.707i)8-s + 1.66i·9-s + (−0.948 − 0.316i)10-s + 0.301i·11-s + (1.15 − 1.15i)12-s + (−1.10 + 1.10i)13-s − 0.534i·14-s + (0.516 − 1.54i)15-s − 16-s + (0.485 + 0.485i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.08965 - 0.593626i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08965 - 0.593626i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 5 | \( 1 + (1 + 2i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (-2 - 2i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - 7iT^{2} \) |
| 13 | \( 1 + (4 - 4i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2 - 2i)T + 17iT^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (-4 - 4i)T + 23iT^{2} \) |
| 29 | \( 1 + 2iT - 29T^{2} \) |
| 31 | \( 1 + 8iT - 31T^{2} \) |
| 37 | \( 1 + (5 + 5i)T + 37iT^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + (1 + i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4 + 4i)T - 47iT^{2} \) |
| 53 | \( 1 + (-9 + 9i)T - 53iT^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (-2 + 2i)T - 73iT^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + (1 + i)T + 83iT^{2} \) |
| 89 | \( 1 + 6iT - 89T^{2} \) |
| 97 | \( 1 + (3 + 3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18867249337151837304572447647, −11.29397202068506082252926055128, −10.11648237488714637021480229585, −9.453633220649238396697070769593, −8.624312871136564018272125362135, −7.33597006180653478265023245178, −5.25738493624964375170500868039, −4.38338932882092220423139813221, −3.72139969892751743934681285446, −2.09092810389286353199831228164,
2.59057171889261465725008868322, 3.27808248789426262086213812530, 5.10946208062674339360294620042, 6.61635367314294036585971940962, 7.31245446689933418325187777012, 8.077176421466973270283863362218, 8.831921865954385221617692499110, 10.54137573775509692327993230978, 12.01700346542955690325834525975, 12.45985598901552531534436160613