L(s) = 1 | + (1 + i)2-s + (2 − 2i)3-s + 2i·4-s + (−1 + 2i)5-s + 4·6-s + (1 + i)7-s + (−2 + 2i)8-s − 5i·9-s + (−3 + i)10-s − i·11-s + (4 + 4i)12-s + (−4 − 4i)13-s + 2i·14-s + (2 + 6i)15-s − 4·16-s + (2 − 2i)17-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (1.15 − 1.15i)3-s + i·4-s + (−0.447 + 0.894i)5-s + 1.63·6-s + (0.377 + 0.377i)7-s + (−0.707 + 0.707i)8-s − 1.66i·9-s + (−0.948 + 0.316i)10-s − 0.301i·11-s + (1.15 + 1.15i)12-s + (−1.10 − 1.10i)13-s + 0.534i·14-s + (0.516 + 1.54i)15-s − 16-s + (0.485 − 0.485i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.08965 + 0.593626i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08965 + 0.593626i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 5 | \( 1 + (1 - 2i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-2 + 2i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 13 | \( 1 + (4 + 4i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2 + 2i)T - 17iT^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (-4 + 4i)T - 23iT^{2} \) |
| 29 | \( 1 - 2iT - 29T^{2} \) |
| 31 | \( 1 - 8iT - 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + (1 - i)T - 43iT^{2} \) |
| 47 | \( 1 + (-4 - 4i)T + 47iT^{2} \) |
| 53 | \( 1 + (-9 - 9i)T + 53iT^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + (-2 - 2i)T + 73iT^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + (1 - i)T - 83iT^{2} \) |
| 89 | \( 1 - 6iT - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45985598901552531534436160613, −12.01700346542955690325834525975, −10.54137573775509692327993230978, −8.831921865954385221617692499110, −8.077176421466973270283863362218, −7.31245446689933418325187777012, −6.61635367314294036585971940962, −5.10946208062674339360294620042, −3.27808248789426262086213812530, −2.59057171889261465725008868322,
2.09092810389286353199831228164, 3.72139969892751743934681285446, 4.38338932882092220423139813221, 5.25738493624964375170500868039, 7.33597006180653478265023245178, 8.624312871136564018272125362135, 9.453633220649238396697070769593, 10.11648237488714637021480229585, 11.29397202068506082252926055128, 12.18867249337151837304572447647