Properties

Label 2-22-1.1-c5-0-3
Degree $2$
Conductor $22$
Sign $-1$
Analytic cond. $3.52844$
Root an. cond. $1.87841$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 3-s + 16·4-s − 51·5-s − 4·6-s − 166·7-s − 64·8-s − 242·9-s + 204·10-s − 121·11-s + 16·12-s + 692·13-s + 664·14-s − 51·15-s + 256·16-s − 738·17-s + 968·18-s + 1.42e3·19-s − 816·20-s − 166·21-s + 484·22-s − 1.77e3·23-s − 64·24-s − 524·25-s − 2.76e3·26-s − 485·27-s − 2.65e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.0641·3-s + 1/2·4-s − 0.912·5-s − 0.0453·6-s − 1.28·7-s − 0.353·8-s − 0.995·9-s + 0.645·10-s − 0.301·11-s + 0.0320·12-s + 1.13·13-s + 0.905·14-s − 0.0585·15-s + 1/4·16-s − 0.619·17-s + 0.704·18-s + 0.904·19-s − 0.456·20-s − 0.0821·21-s + 0.213·22-s − 0.701·23-s − 0.0226·24-s − 0.167·25-s − 0.803·26-s − 0.128·27-s − 0.640·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22\)    =    \(2 \cdot 11\)
Sign: $-1$
Analytic conductor: \(3.52844\)
Root analytic conductor: \(1.87841\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 22,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
11 \( 1 + p^{2} T \)
good3 \( 1 - T + p^{5} T^{2} \)
5 \( 1 + 51 T + p^{5} T^{2} \)
7 \( 1 + 166 T + p^{5} T^{2} \)
13 \( 1 - 692 T + p^{5} T^{2} \)
17 \( 1 + 738 T + p^{5} T^{2} \)
19 \( 1 - 1424 T + p^{5} T^{2} \)
23 \( 1 + 1779 T + p^{5} T^{2} \)
29 \( 1 + 2064 T + p^{5} T^{2} \)
31 \( 1 - 6245 T + p^{5} T^{2} \)
37 \( 1 + 14785 T + p^{5} T^{2} \)
41 \( 1 - 5304 T + p^{5} T^{2} \)
43 \( 1 - 17798 T + p^{5} T^{2} \)
47 \( 1 + 17184 T + p^{5} T^{2} \)
53 \( 1 + 30726 T + p^{5} T^{2} \)
59 \( 1 + 34989 T + p^{5} T^{2} \)
61 \( 1 + 45940 T + p^{5} T^{2} \)
67 \( 1 - 25343 T + p^{5} T^{2} \)
71 \( 1 - 13311 T + p^{5} T^{2} \)
73 \( 1 + 53260 T + p^{5} T^{2} \)
79 \( 1 - 77234 T + p^{5} T^{2} \)
83 \( 1 - 55014 T + p^{5} T^{2} \)
89 \( 1 - 125415 T + p^{5} T^{2} \)
97 \( 1 + 88807 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.13704085164519287550561730610, −15.62200030344491510526142876105, −13.71930333705818205251192437822, −12.11092717465564811607596492324, −10.89267977723568722889815913352, −9.270707670509439734046639466414, −7.960663838561403831392220075405, −6.24607614791838155446468459828, −3.31591632980037824949397176501, 0, 3.31591632980037824949397176501, 6.24607614791838155446468459828, 7.960663838561403831392220075405, 9.270707670509439734046639466414, 10.89267977723568722889815913352, 12.11092717465564811607596492324, 13.71930333705818205251192437822, 15.62200030344491510526142876105, 16.13704085164519287550561730610

Graph of the $Z$-function along the critical line