Properties

Label 2-21e2-9.4-c1-0-8
Degree $2$
Conductor $441$
Sign $0.0288 - 0.999i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.849 + 1.47i)2-s + (−1.40 − 1.01i)3-s + (−0.444 + 0.769i)4-s + (−0.474 + 0.822i)5-s + (0.298 − 2.92i)6-s + 1.88·8-s + (0.944 + 2.84i)9-s − 1.61·10-s + (0.294 + 0.509i)11-s + (1.40 − 0.630i)12-s + (−2.50 + 4.34i)13-s + (1.5 − 0.673i)15-s + (2.49 + 4.31i)16-s + 7.58·17-s + (−3.38 + 3.80i)18-s + 4.46·19-s + ⋯
L(s)  = 1  + (0.600 + 1.04i)2-s + (−0.810 − 0.585i)3-s + (−0.222 + 0.384i)4-s + (−0.212 + 0.367i)5-s + (0.121 − 1.19i)6-s + 0.667·8-s + (0.314 + 0.949i)9-s − 0.510·10-s + (0.0886 + 0.153i)11-s + (0.405 − 0.181i)12-s + (−0.696 + 1.20i)13-s + (0.387 − 0.173i)15-s + (0.623 + 1.07i)16-s + 1.83·17-s + (−0.798 + 0.897i)18-s + 1.02·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0288 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0288 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $0.0288 - 0.999i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (148, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ 0.0288 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.09716 + 1.06597i\)
\(L(\frac12)\) \(\approx\) \(1.09716 + 1.06597i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.40 + 1.01i)T \)
7 \( 1 \)
good2 \( 1 + (-0.849 - 1.47i)T + (-1 + 1.73i)T^{2} \)
5 \( 1 + (0.474 - 0.822i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-0.294 - 0.509i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (2.50 - 4.34i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 - 7.58T + 17T^{2} \)
19 \( 1 - 4.46T + 19T^{2} \)
23 \( 1 + (1.23 - 2.14i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (2.73 + 4.74i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (3.03 - 5.26i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 6.98T + 37T^{2} \)
41 \( 1 + (0.527 - 0.913i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (3.49 + 6.05i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (3.73 + 6.47i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 - 6.92T + 53T^{2} \)
59 \( 1 + (-5.21 + 9.03i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-5.82 - 10.0i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.93 + 10.2i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 4.30T + 71T^{2} \)
73 \( 1 + 4.46T + 73T^{2} \)
79 \( 1 + (-0.666 - 1.15i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (2.84 + 4.92i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + 0.843T + 89T^{2} \)
97 \( 1 + (1.70 + 2.94i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.66193939327285973357399416142, −10.51196036051485731732476221094, −9.665903806084590474591894675964, −8.069613674869321022225295619532, −7.14455551424443599949310117135, −6.90653782714428882250180779660, −5.56013321332309578188713054729, −5.13768266531259673936144826136, −3.70740430868905333552724793250, −1.65572267324467853326099265008, 1.00409011591141784623956126102, 3.00261499984894109337339103379, 3.85131038724608662655177996341, 5.07191479216457841089515239722, 5.56736410606887194362765050891, 7.19816768284425793525546297206, 8.153509770153099553774735750179, 9.690004877780766618182862181449, 10.18475320591956059288882133469, 11.02390668090404602610184122875

Graph of the $Z$-function along the critical line