L(s) = 1 | + (−1.08 − 1.88i)2-s + (−1.68 − 0.388i)3-s + (−1.36 + 2.36i)4-s + (0.634 − 1.09i)5-s + (1.10 + 3.60i)6-s + 1.60·8-s + (2.69 + 1.31i)9-s − 2.76·10-s + (2.73 + 4.74i)11-s + (3.23 − 3.46i)12-s + (−2.37 + 4.10i)13-s + (−1.49 + 1.60i)15-s + (0.992 + 1.71i)16-s + 4.81·17-s + (−0.463 − 6.51i)18-s − 5.38·19-s + ⋯ |
L(s) = 1 | + (−0.769 − 1.33i)2-s + (−0.974 − 0.224i)3-s + (−0.684 + 1.18i)4-s + (0.283 − 0.491i)5-s + (0.450 + 1.47i)6-s + 0.566·8-s + (0.899 + 0.437i)9-s − 0.872·10-s + (0.825 + 1.43i)11-s + (0.932 − 1.00i)12-s + (−0.658 + 1.13i)13-s + (−0.386 + 0.415i)15-s + (0.248 + 0.429i)16-s + 1.16·17-s + (−0.109 − 1.53i)18-s − 1.23·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.579015 - 0.245342i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.579015 - 0.245342i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.68 + 0.388i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.08 + 1.88i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.634 + 1.09i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.73 - 4.74i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.37 - 4.10i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.81T + 17T^{2} \) |
| 19 | \( 1 + 5.38T + 19T^{2} \) |
| 23 | \( 1 + (-2.58 + 4.48i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.01 - 3.49i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.732 - 1.26i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.91T + 37T^{2} \) |
| 41 | \( 1 + (-1.94 + 3.37i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.66 + 2.87i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.57 - 2.73i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.14T + 53T^{2} \) |
| 59 | \( 1 + (-0.154 + 0.267i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.17 - 8.95i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.23 - 3.87i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.96T + 71T^{2} \) |
| 73 | \( 1 - 10.5T + 73T^{2} \) |
| 79 | \( 1 + (-4.50 - 7.80i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.08 - 8.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 5.19T + 89T^{2} \) |
| 97 | \( 1 + (-2.48 - 4.30i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99206608190206309641635596388, −10.15612509512407832640955103570, −9.520419700127061967148523115507, −8.732941272908742225135530461226, −7.30755880890995873425054400660, −6.44394523583656347919991720011, −4.98177747030817052200633735208, −4.09508207761860408291887332703, −2.18597009687067064883849076804, −1.24356570853996643441822527972,
0.68385341069196385304037100279, 3.32879566559630105114542807926, 5.02131510569892043298222791287, 6.02420155346407971733311127847, 6.34790355616461197858552656798, 7.49533696389768367248425467524, 8.317821594589935473015837865956, 9.432418739480568272763826342898, 10.15804095040130411933095269281, 10.98755363855350821051125106606