L(s) = 1 | + (1.35 + 2.35i)2-s + (0.521 + 1.65i)3-s + (−2.68 + 4.65i)4-s + (0.793 − 1.37i)5-s + (−3.17 + 3.46i)6-s − 9.15·8-s + (−2.45 + 1.72i)9-s + 4.30·10-s + (0.674 + 1.16i)11-s + (−9.08 − 2.00i)12-s + (1.58 − 2.75i)13-s + (2.68 + 0.593i)15-s + (−7.05 − 12.2i)16-s + 2.80·17-s + (−7.38 − 3.43i)18-s + 0.625·19-s + ⋯ |
L(s) = 1 | + (0.959 + 1.66i)2-s + (0.301 + 0.953i)3-s + (−1.34 + 2.32i)4-s + (0.354 − 0.614i)5-s + (−1.29 + 1.41i)6-s − 3.23·8-s + (−0.818 + 0.574i)9-s + 1.36·10-s + (0.203 + 0.352i)11-s + (−2.62 − 0.580i)12-s + (0.440 − 0.763i)13-s + (0.692 + 0.153i)15-s + (−1.76 − 3.05i)16-s + 0.679·17-s + (−1.74 − 0.809i)18-s + 0.143·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.259i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.298983 - 2.26306i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.298983 - 2.26306i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.521 - 1.65i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.35 - 2.35i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.793 + 1.37i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.674 - 1.16i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.58 + 2.75i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 2.80T + 17T^{2} \) |
| 19 | \( 1 - 0.625T + 19T^{2} \) |
| 23 | \( 1 + (-0.142 + 0.246i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.27 - 3.93i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.71 - 6.43i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.02T + 37T^{2} \) |
| 41 | \( 1 + (-5.01 + 8.68i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.12 + 5.42i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.57 + 9.65i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.78T + 53T^{2} \) |
| 59 | \( 1 + (2.28 - 3.96i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.192 - 0.333i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.26 + 2.19i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.45T + 71T^{2} \) |
| 73 | \( 1 + 0.468T + 73T^{2} \) |
| 79 | \( 1 + (-7.85 - 13.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.99 + 12.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.58T + 89T^{2} \) |
| 97 | \( 1 + (-7.22 - 12.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98899148405473760626828048854, −10.55504349674956101345836209184, −9.363238081170103434280445292623, −8.705434682206819928799567926424, −7.917217831194494159200302859078, −6.85734586894363843831942269562, −5.52937497684824341681314287648, −5.23754026669783140266905142916, −4.09535831953472570092121507582, −3.17472111563172880649689146930,
1.17172148960976906801942201666, 2.38736828795049813495316335968, 3.22332227948477598607836144015, 4.39531273405875379095870517028, 5.89883645915961494540203159844, 6.40745474383066588549072616612, 7.990722368703889447187080305403, 9.274257802947085208887963737577, 9.885423215426595292637352434503, 11.18682137926909140055936749262