Properties

 Label 2-21e2-7.4-c3-0-32 Degree $2$ Conductor $441$ Sign $0.266 + 0.963i$ Analytic cond. $26.0198$ Root an. cond. $5.10096$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

Related objects

Dirichlet series

 L(s)  = 1 + (4 − 6.92i)4-s + 70·13-s + (−31.9 − 55.4i)16-s + (28 + 48.4i)19-s + (62.5 − 108. i)25-s + (154 − 266. i)31-s + (−55 − 95.2i)37-s − 520·43-s + (280 − 484. i)52-s + (91 + 157. i)61-s − 511.·64-s + (440 − 762. i)67-s + (595 − 1.03e3i)73-s + 448·76-s + (−442 − 765. i)79-s + ⋯
 L(s)  = 1 + (0.5 − 0.866i)4-s + 1.49·13-s + (−0.499 − 0.866i)16-s + (0.338 + 0.585i)19-s + (0.5 − 0.866i)25-s + (0.892 − 1.54i)31-s + (−0.244 − 0.423i)37-s − 1.84·43-s + (0.746 − 1.29i)52-s + (0.191 + 0.330i)61-s − 0.999·64-s + (0.802 − 1.38i)67-s + (0.953 − 1.65i)73-s + 0.676·76-s + (−0.629 − 1.09i)79-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

 Degree: $$2$$ Conductor: $$441$$    =    $$3^{2} \cdot 7^{2}$$ Sign: $0.266 + 0.963i$ Analytic conductor: $$26.0198$$ Root analytic conductor: $$5.10096$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{441} (361, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 441,\ (\ :3/2),\ 0.266 + 0.963i)$$

Particular Values

 $$L(2)$$ $$\approx$$ $$2.215851846$$ $$L(\frac12)$$ $$\approx$$ $$2.215851846$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 + (-4 + 6.92i)T^{2}$$
5 $$1 + (-62.5 + 108. i)T^{2}$$
11 $$1 + (-665.5 - 1.15e3i)T^{2}$$
13 $$1 - 70T + 2.19e3T^{2}$$
17 $$1 + (-2.45e3 - 4.25e3i)T^{2}$$
19 $$1 + (-28 - 48.4i)T + (-3.42e3 + 5.94e3i)T^{2}$$
23 $$1 + (-6.08e3 + 1.05e4i)T^{2}$$
29 $$1 + 2.43e4T^{2}$$
31 $$1 + (-154 + 266. i)T + (-1.48e4 - 2.57e4i)T^{2}$$
37 $$1 + (55 + 95.2i)T + (-2.53e4 + 4.38e4i)T^{2}$$
41 $$1 + 6.89e4T^{2}$$
43 $$1 + 520T + 7.95e4T^{2}$$
47 $$1 + (-5.19e4 + 8.99e4i)T^{2}$$
53 $$1 + (-7.44e4 - 1.28e5i)T^{2}$$
59 $$1 + (-1.02e5 - 1.77e5i)T^{2}$$
61 $$1 + (-91 - 157. i)T + (-1.13e5 + 1.96e5i)T^{2}$$
67 $$1 + (-440 + 762. i)T + (-1.50e5 - 2.60e5i)T^{2}$$
71 $$1 + 3.57e5T^{2}$$
73 $$1 + (-595 + 1.03e3i)T + (-1.94e5 - 3.36e5i)T^{2}$$
79 $$1 + (442 + 765. i)T + (-2.46e5 + 4.26e5i)T^{2}$$
83 $$1 + 5.71e5T^{2}$$
89 $$1 + (-3.52e5 + 6.10e5i)T^{2}$$
97 $$1 - 1.33e3T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

Imaginary part of the first few zeros on the critical line

−10.52443727281703733767782848486, −9.793669872456783475900362390348, −8.734851714721924688401780240230, −7.76970550240274935507859973537, −6.49770407250731333564637511219, −5.98155052175071680745929254055, −4.80332429495097302717263278124, −3.46495679072924515643198194158, −2.01047719789283763296679350191, −0.78048792638021808788462561266, 1.37395620063031139417672714403, 2.93106358904960128310417592302, 3.76920995117335966210653982614, 5.11591640376003062515235918775, 6.44695718963114991338191185798, 7.09584968711626688931932193397, 8.318220335954036810235810003952, 8.767380475425838888391947251652, 10.09418215295189394982834103291, 11.12925556928634260238968211254