Properties

Label 2-21e2-63.4-c1-0-33
Degree $2$
Conductor $441$
Sign $-0.434 - 0.900i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.863 − 1.49i)2-s + (−0.615 − 1.61i)3-s + (−0.490 − 0.849i)4-s − 3.51·5-s + (−2.95 − 0.477i)6-s + 1.75·8-s + (−2.24 + 1.99i)9-s + (−3.03 + 5.25i)10-s − 6.09·11-s + (−1.07 + 1.31i)12-s + (−0.560 + 0.970i)13-s + (2.16 + 5.68i)15-s + (2.49 − 4.32i)16-s + (0.601 − 1.04i)17-s + (1.04 + 5.07i)18-s + (−1.10 − 1.90i)19-s + ⋯
L(s)  = 1  + (0.610 − 1.05i)2-s + (−0.355 − 0.934i)3-s + (−0.245 − 0.424i)4-s − 1.57·5-s + (−1.20 − 0.195i)6-s + 0.621·8-s + (−0.747 + 0.664i)9-s + (−0.958 + 1.66i)10-s − 1.83·11-s + (−0.310 + 0.380i)12-s + (−0.155 + 0.269i)13-s + (0.557 + 1.46i)15-s + (0.624 − 1.08i)16-s + (0.146 − 0.252i)17-s + (0.245 + 1.19i)18-s + (−0.252 − 0.438i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.434 - 0.900i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ -0.434 - 0.900i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.262091 + 0.417621i\)
\(L(\frac12)\) \(\approx\) \(0.262091 + 0.417621i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.615 + 1.61i)T \)
7 \( 1 \)
good2 \( 1 + (-0.863 + 1.49i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + 3.51T + 5T^{2} \)
11 \( 1 + 6.09T + 11T^{2} \)
13 \( 1 + (0.560 - 0.970i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-0.601 + 1.04i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.10 + 1.90i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + 1.27T + 23T^{2} \)
29 \( 1 + (3.10 + 5.37i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (0.0942 + 0.163i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.78 + 3.09i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.68 - 2.91i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (1.90 + 3.29i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (2.86 - 4.95i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-4.16 + 7.22i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (5.63 + 9.75i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-6.00 + 10.3i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.95 - 6.85i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 12.2T + 71T^{2} \)
73 \( 1 + (2.65 - 4.60i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (4.60 - 7.98i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (0.624 + 1.08i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-2.77 - 4.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (8.24 + 14.2i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12212691596987997232323376615, −10.08513885793909205681583724674, −8.287478006641163444542782848787, −7.75761700161621740416784223935, −7.02203463032123547837580378882, −5.38572717834498690549344174250, −4.48147358172123561762188649413, −3.24350373165182494608115717826, −2.23278159396473677891461271868, −0.25234443196570506573885047250, 3.22055891879169525971739728693, 4.25852453717841658225223059180, 5.05969416588911068418277433002, 5.83494616820641411054287074082, 7.18492730468890871385473592510, 7.88624487229190378203236020425, 8.638177662049037834384166182618, 10.34012164959173324528682941168, 10.63937541378331776563503301915, 11.71762215151705354655737113044

Graph of the $Z$-function along the critical line