L(s) = 1 | + (−0.649 + 1.12i)2-s + (1.52 + 0.821i)3-s + (0.155 + 0.268i)4-s − 3.52·5-s + (−1.91 + 1.18i)6-s − 3.00·8-s + (1.65 + 2.50i)9-s + (2.29 − 3.96i)10-s + 1.17·11-s + (0.0159 + 0.537i)12-s + (−1.61 + 2.78i)13-s + (−5.37 − 2.89i)15-s + (1.64 − 2.84i)16-s + (−2.45 + 4.24i)17-s + (−3.89 + 0.231i)18-s + (−3.43 − 5.94i)19-s + ⋯ |
L(s) = 1 | + (−0.459 + 0.796i)2-s + (0.880 + 0.474i)3-s + (0.0775 + 0.134i)4-s − 1.57·5-s + (−0.782 + 0.482i)6-s − 1.06·8-s + (0.550 + 0.834i)9-s + (0.724 − 1.25i)10-s + 0.355·11-s + (0.00460 + 0.155i)12-s + (−0.446 + 0.773i)13-s + (−1.38 − 0.747i)15-s + (0.410 − 0.710i)16-s + (−0.594 + 1.02i)17-s + (−0.917 + 0.0545i)18-s + (−0.787 − 1.36i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.301i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.953 + 0.301i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.117512 - 0.760724i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.117512 - 0.760724i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.52 - 0.821i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.649 - 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + 3.52T + 5T^{2} \) |
| 11 | \( 1 - 1.17T + 11T^{2} \) |
| 13 | \( 1 + (1.61 - 2.78i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.45 - 4.24i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.43 + 5.94i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4.29T + 23T^{2} \) |
| 29 | \( 1 + (-1.36 - 2.35i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.960 + 1.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.88 - 8.45i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.32 + 5.76i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.83 - 8.37i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.316 + 0.548i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 1.92i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.10 - 7.11i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.82 - 8.36i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.66 + 4.61i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.27T + 71T^{2} \) |
| 73 | \( 1 + (-0.519 + 0.898i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.502 - 0.869i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.65 - 6.33i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.02 - 10.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.46 - 9.46i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.56917871628994559114775579909, −10.71625342246816336442201399187, −9.346972447276776322308542801420, −8.681065230353359329566804557025, −8.028167757419751888243441715225, −7.28319905019939679665480785131, −6.44350296313580587434836060720, −4.51750989948506456143329431282, −3.88777203420201498600217023845, −2.60713387764308263757441329308,
0.48656251661312492981554787381, 2.19558972044110696116252551893, 3.33771978166774825449346868352, 4.25557553066317885291572761896, 6.07822074686832329119031700078, 7.28677715829369150521429748038, 7.995944655905246046141411132845, 8.806995460180610280480131612358, 9.727737208972131735412374902558, 10.66205668351681094844991320222