Properties

Label 2-21e2-63.25-c1-0-16
Degree $2$
Conductor $441$
Sign $0.652 + 0.758i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.46·2-s + (−0.796 + 1.53i)3-s + 4.05·4-s + (−1.29 + 2.24i)5-s + (1.96 − 3.78i)6-s − 5.05·8-s + (−1.73 − 2.45i)9-s + (3.19 − 5.52i)10-s + (−2.25 − 3.90i)11-s + (−3.23 + 6.23i)12-s + (0.5 + 0.866i)13-s + (−2.42 − 3.78i)15-s + 4.32·16-s + (−0.472 + 0.819i)17-s + (4.25 + 6.03i)18-s + (−2.02 − 3.51i)19-s + ⋯
L(s)  = 1  − 1.73·2-s + (−0.460 + 0.887i)3-s + 2.02·4-s + (−0.579 + 1.00i)5-s + (0.800 − 1.54i)6-s − 1.78·8-s + (−0.576 − 0.816i)9-s + (1.00 − 1.74i)10-s + (−0.680 − 1.17i)11-s + (−0.932 + 1.79i)12-s + (0.138 + 0.240i)13-s + (−0.625 − 0.977i)15-s + 1.08·16-s + (−0.114 + 0.198i)17-s + (1.00 + 1.42i)18-s + (−0.465 − 0.805i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.652 + 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.652 + 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $0.652 + 0.758i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (214, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ 0.652 + 0.758i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.193891 - 0.0889794i\)
\(L(\frac12)\) \(\approx\) \(0.193891 - 0.0889794i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.796 - 1.53i)T \)
7 \( 1 \)
good2 \( 1 + 2.46T + 2T^{2} \)
5 \( 1 + (1.29 - 2.24i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.25 + 3.90i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.5 - 0.866i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (0.472 - 0.819i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.02 + 3.51i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.136 + 0.236i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (1.23 - 2.13i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 2.32T + 31T^{2} \)
37 \( 1 + (0.890 + 1.54i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3.20 + 5.54i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-5.21 + 9.03i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 + (-3.13 + 5.43i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 - 2.72T + 59T^{2} \)
61 \( 1 - 2.27T + 61T^{2} \)
67 \( 1 + 15.8T + 67T^{2} \)
71 \( 1 - 3.27T + 71T^{2} \)
73 \( 1 + (0.753 - 1.30i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 + (0.472 - 0.819i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (7.17 + 12.4i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (5.74 - 9.95i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79960451926165178389187026975, −10.33352027676193639308486220238, −9.085124205403233392929411491807, −8.604906130568561260167635094725, −7.44339293567887757683979469609, −6.65771835775710524618158136342, −5.55481505089618625878467967542, −3.78978439984548836159144949904, −2.63695543970514853969731333730, −0.28500900143232814639792404253, 1.13956945177663235263163715841, 2.34790073693719313483733851526, 4.61003599389768930564332478290, 5.91709597633969042317186322609, 7.10847864536751757682355526128, 7.79609096839361607185709627073, 8.344546907483531428513594996939, 9.305068819010799230882393702736, 10.29147485294020555829000457825, 11.06454077444329877422122406452

Graph of the $Z$-function along the critical line