Properties

Label 2-21e2-441.142-c1-0-8
Degree $2$
Conductor $441$
Sign $-0.481 + 0.876i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.682 + 1.73i)2-s + (0.970 + 1.43i)3-s + (−1.09 − 1.01i)4-s + (−0.565 + 0.272i)5-s + (−3.15 + 0.709i)6-s + (−2.38 − 1.14i)7-s + (−0.852 + 0.410i)8-s + (−1.11 + 2.78i)9-s + (−0.0876 − 1.16i)10-s + (−1.43 − 1.79i)11-s + (0.394 − 2.55i)12-s + (−0.0553 + 0.141i)13-s + (3.62 − 3.36i)14-s + (−0.939 − 0.546i)15-s + (−0.355 − 4.74i)16-s + (−4.56 + 4.23i)17-s + ⋯
L(s)  = 1  + (−0.482 + 1.23i)2-s + (0.560 + 0.828i)3-s + (−0.547 − 0.507i)4-s + (−0.252 + 0.121i)5-s + (−1.28 + 0.289i)6-s + (−0.900 − 0.434i)7-s + (−0.301 + 0.145i)8-s + (−0.371 + 0.928i)9-s + (−0.0277 − 0.369i)10-s + (−0.432 − 0.542i)11-s + (0.113 − 0.738i)12-s + (−0.0153 + 0.0391i)13-s + (0.969 − 0.898i)14-s + (−0.242 − 0.141i)15-s + (−0.0888 − 1.18i)16-s + (−1.10 + 1.02i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.481 + 0.876i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.481 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.481 + 0.876i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (142, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ -0.481 + 0.876i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.312905 - 0.529114i\)
\(L(\frac12)\) \(\approx\) \(0.312905 - 0.529114i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.970 - 1.43i)T \)
7 \( 1 + (2.38 + 1.14i)T \)
good2 \( 1 + (0.682 - 1.73i)T + (-1.46 - 1.36i)T^{2} \)
5 \( 1 + (0.565 - 0.272i)T + (3.11 - 3.90i)T^{2} \)
11 \( 1 + (1.43 + 1.79i)T + (-2.44 + 10.7i)T^{2} \)
13 \( 1 + (0.0553 - 0.141i)T + (-9.52 - 8.84i)T^{2} \)
17 \( 1 + (4.56 - 4.23i)T + (1.27 - 16.9i)T^{2} \)
19 \( 1 + (-1.98 + 3.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.14 - 5.01i)T + (-20.7 - 9.97i)T^{2} \)
29 \( 1 + (-4.55 - 1.40i)T + (23.9 + 16.3i)T^{2} \)
31 \( 1 + (2.14 - 3.72i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.69 + 0.830i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (-7.50 - 5.11i)T + (14.9 + 38.1i)T^{2} \)
43 \( 1 + (-6.56 + 4.47i)T + (15.7 - 40.0i)T^{2} \)
47 \( 1 + (1.56 - 3.98i)T + (-34.4 - 31.9i)T^{2} \)
53 \( 1 + (7.82 - 2.41i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (-8.62 + 5.87i)T + (21.5 - 54.9i)T^{2} \)
61 \( 1 + (-2.24 + 2.08i)T + (4.55 - 60.8i)T^{2} \)
67 \( 1 + (0.672 - 1.16i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (0.851 - 3.72i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (8.10 + 1.22i)T + (69.7 + 21.5i)T^{2} \)
79 \( 1 + (-6.42 - 11.1i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (2.57 + 6.56i)T + (-60.8 + 56.4i)T^{2} \)
89 \( 1 + (-3.57 - 9.10i)T + (-65.2 + 60.5i)T^{2} \)
97 \( 1 + (-6.19 + 10.7i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38384795311808741568901836742, −10.61747048690761298156881143363, −9.542660121487233482519705608540, −8.969203840776048608425773459643, −8.054009205342079521238762559666, −7.26268863515397508277929591863, −6.26944571206591098356288381553, −5.25636073416508498871685772063, −3.89895553537567407474811131477, −2.85522952709913561263385082007, 0.39374933995012399801073007913, 2.18633082096710951841846123172, 2.84607591095744466400887120525, 4.12821031406497146355182135897, 5.97423410648297474771775053203, 6.88549626731204798382639017820, 8.019655860328040991226305476312, 8.962264160995844113288499429195, 9.606376983257215928790758447831, 10.44097329080728124920693086360

Graph of the $Z$-function along the critical line