L(s) = 1 | − 0.748i·2-s + 7.43·4-s − 10.8·5-s − 11.5i·8-s + 8.13i·10-s + 51.8i·11-s − 32.1i·13-s + 50.8·16-s − 81.4·17-s + 0.0485i·19-s − 80.7·20-s + 38.8·22-s + 89.2i·23-s − 7.16·25-s − 24.1·26-s + ⋯ |
L(s) = 1 | − 0.264i·2-s + 0.929·4-s − 0.970·5-s − 0.511i·8-s + 0.257i·10-s + 1.42i·11-s − 0.686i·13-s + 0.794·16-s − 1.16·17-s + 0.000586i·19-s − 0.902·20-s + 0.376·22-s + 0.809i·23-s − 0.0572·25-s − 0.181·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.150195436\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.150195436\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.748iT - 8T^{2} \) |
| 5 | \( 1 + 10.8T + 125T^{2} \) |
| 11 | \( 1 - 51.8iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 32.1iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 81.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 0.0485iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 89.2iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 175. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 215. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 64.5T + 5.06e4T^{2} \) |
| 41 | \( 1 - 411.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 234.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 632.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 265. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 351.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 778. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 196.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 142. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 780. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.28e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 235.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 670.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 655. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00516244825434336102971113381, −10.27856133004559348697213738589, −9.228630600559675000029907653307, −7.962771831784966975254957399352, −7.29346624544454290230892261992, −6.51595613922824756576015209240, −5.07204580440954550128256951102, −3.94213128353435459353715128895, −2.81143604159024935485161784613, −1.51458313742876646140496860714,
0.35192754438797187297000799858, 2.18880142974107168518900333316, 3.43356332181931404657529683054, 4.53786610134726860750502131022, 6.04607969197062423154463262393, 6.62103767952697417623107120459, 7.82534614607397762168378385860, 8.313939956967395361744715359272, 9.484761295938560174821789942793, 10.88802387846369505356762073412