Properties

Label 2-21e2-21.20-c1-0-3
Degree $2$
Conductor $441$
Sign $-0.896 - 0.442i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41i·2-s − 3.82·4-s + 3.37·5-s − 4.41i·8-s + 8.15i·10-s + 0.828i·11-s + 3.37i·13-s + 2.99·16-s + 1.39·17-s + 6.75i·19-s − 12.9·20-s − 1.99·22-s + 2i·23-s + 6.41·25-s − 8.15·26-s + ⋯
L(s)  = 1  + 1.70i·2-s − 1.91·4-s + 1.51·5-s − 1.56i·8-s + 2.57i·10-s + 0.249i·11-s + 0.937i·13-s + 0.749·16-s + 0.339·17-s + 1.55i·19-s − 2.89·20-s − 0.426·22-s + 0.417i·23-s + 1.28·25-s − 1.59·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.896 - 0.442i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.896 - 0.442i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.896 - 0.442i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (440, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ -0.896 - 0.442i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.355827 + 1.52562i\)
\(L(\frac12)\) \(\approx\) \(0.355827 + 1.52562i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 2.41iT - 2T^{2} \)
5 \( 1 - 3.37T + 5T^{2} \)
11 \( 1 - 0.828iT - 11T^{2} \)
13 \( 1 - 3.37iT - 13T^{2} \)
17 \( 1 - 1.39T + 17T^{2} \)
19 \( 1 - 6.75iT - 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 + 4.82iT - 29T^{2} \)
31 \( 1 + 6.75iT - 31T^{2} \)
37 \( 1 + 2.58T + 37T^{2} \)
41 \( 1 - 8.15T + 41T^{2} \)
43 \( 1 + 12.4T + 43T^{2} \)
47 \( 1 - 6.75T + 47T^{2} \)
53 \( 1 + 7.07iT - 53T^{2} \)
59 \( 1 - 6.75T + 59T^{2} \)
61 \( 1 + 8.15iT - 61T^{2} \)
67 \( 1 - 8.48T + 67T^{2} \)
71 \( 1 - 4.82iT - 71T^{2} \)
73 \( 1 + 1.39iT - 73T^{2} \)
79 \( 1 + 9.65T + 79T^{2} \)
83 \( 1 + 13.5T + 83T^{2} \)
89 \( 1 - 6.17T + 89T^{2} \)
97 \( 1 - 1.39iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.54124272468501787666024245147, −9.971025277392593037254341146308, −9.649534012348596674626092180521, −8.629750328522021901515460345152, −7.69844334730065607797506701131, −6.67411425433313242444499980728, −5.96037432373038597282950200361, −5.32056029051515212449182326520, −4.07133810283170706612900237609, −1.96321025692432800132810724762, 1.10455842338892364057098247357, 2.40502404901435535113910720856, 3.21641956255137791994715397057, 4.78742408271253130936965406469, 5.62042540900468550177900900934, 6.92304668090455514735489630752, 8.630577766661762168964230812570, 9.218397295179290014580368941514, 10.19765675091914119088783394583, 10.55324807180446623976678771932

Graph of the $Z$-function along the critical line