Properties

Label 2-21e2-21.17-c3-0-31
Degree $2$
Conductor $441$
Sign $-0.851 + 0.524i$
Analytic cond. $26.0198$
Root an. cond. $5.10096$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.21 + 2.43i)2-s + (7.83 − 13.5i)4-s + (−6.38 − 11.0i)5-s + 37.3i·8-s + (53.7 + 31.0i)10-s + (−46.8 − 27.0i)11-s − 8.85i·13-s + (−28.1 − 48.7i)16-s + (34.4 − 59.6i)17-s + (141. − 81.9i)19-s − 200.·20-s + 263.·22-s + (81.3 − 46.9i)23-s + (−18.9 + 32.8i)25-s + (21.5 + 37.3i)26-s + ⋯
L(s)  = 1  + (−1.48 + 0.860i)2-s + (0.979 − 1.69i)4-s + (−0.570 − 0.988i)5-s + 1.64i·8-s + (1.70 + 0.981i)10-s + (−1.28 − 0.741i)11-s − 0.188i·13-s + (−0.439 − 0.760i)16-s + (0.491 − 0.851i)17-s + (1.71 − 0.989i)19-s − 2.23·20-s + 2.55·22-s + (0.737 − 0.425i)23-s + (−0.151 + 0.262i)25-s + (0.162 + 0.281i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.851 + 0.524i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.851 + 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.851 + 0.524i$
Analytic conductor: \(26.0198\)
Root analytic conductor: \(5.10096\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :3/2),\ -0.851 + 0.524i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3330222936\)
\(L(\frac12)\) \(\approx\) \(0.3330222936\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (4.21 - 2.43i)T + (4 - 6.92i)T^{2} \)
5 \( 1 + (6.38 + 11.0i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (46.8 + 27.0i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 8.85iT - 2.19e3T^{2} \)
17 \( 1 + (-34.4 + 59.6i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-141. + 81.9i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-81.3 + 46.9i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 119. iT - 2.43e4T^{2} \)
31 \( 1 + (85.6 + 49.4i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (47.0 + 81.5i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 259.T + 6.89e4T^{2} \)
43 \( 1 - 5.01T + 7.95e4T^{2} \)
47 \( 1 + (28.6 + 49.6i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-407. - 235. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-112. + 195. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (370. - 213. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (81.9 - 141. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 79.8iT - 3.57e5T^{2} \)
73 \( 1 + (666. + 384. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (267. + 463. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 438.T + 5.71e5T^{2} \)
89 \( 1 + (12.8 + 22.2i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06615272321565919936021454467, −9.085585014722081291322184058023, −8.575283745448460511429463310466, −7.64718096834587226299817354934, −7.13029546001908125751660004781, −5.60038171916951664891977817699, −4.98686975127268318164427136364, −3.01026776436029064666294098738, −1.02080192005771003167659199757, −0.22707523569578432692393564734, 1.48584108937301688305168016180, 2.77973385123956694037844990589, 3.59241372180325014710307146787, 5.40872420682971634789250811433, 7.06612766404667101355007156635, 7.62398267004960622031569466156, 8.317377141180971038921784990377, 9.598541091283548940509993601176, 10.19034550528232183528523927463, 10.81834478573307988623030883792

Graph of the $Z$-function along the critical line