Properties

Label 2-21e2-21.17-c3-0-19
Degree $2$
Conductor $441$
Sign $0.778 + 0.627i$
Analytic cond. $26.0198$
Root an. cond. $5.10096$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.57 − 0.910i)2-s + (−2.34 + 4.05i)4-s + (−7.54 − 13.0i)5-s + 23.0i·8-s + (−23.7 − 13.7i)10-s + (8.56 + 4.94i)11-s + 67.8i·13-s + (2.27 + 3.93i)16-s + (35.0 − 60.7i)17-s + (53.2 − 30.7i)19-s + 70.7·20-s + 18.0·22-s + (113. − 65.7i)23-s + (−51.3 + 88.8i)25-s + (61.7 + 107. i)26-s + ⋯
L(s)  = 1  + (0.557 − 0.321i)2-s + (−0.292 + 0.507i)4-s + (−0.674 − 1.16i)5-s + 1.02i·8-s + (−0.752 − 0.434i)10-s + (0.234 + 0.135i)11-s + 1.44i·13-s + (0.0355 + 0.0615i)16-s + (0.500 − 0.866i)17-s + (0.642 − 0.371i)19-s + 0.790·20-s + 0.174·22-s + (1.03 − 0.596i)23-s + (−0.410 + 0.711i)25-s + (0.466 + 0.807i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.778 + 0.627i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.778 + 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $0.778 + 0.627i$
Analytic conductor: \(26.0198\)
Root analytic conductor: \(5.10096\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :3/2),\ 0.778 + 0.627i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.059556319\)
\(L(\frac12)\) \(\approx\) \(2.059556319\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (-1.57 + 0.910i)T + (4 - 6.92i)T^{2} \)
5 \( 1 + (7.54 + 13.0i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-8.56 - 4.94i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 67.8iT - 2.19e3T^{2} \)
17 \( 1 + (-35.0 + 60.7i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-53.2 + 30.7i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-113. + 65.7i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + 158. iT - 2.43e4T^{2} \)
31 \( 1 + (-66.2 - 38.2i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (174. + 301. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 138.T + 6.89e4T^{2} \)
43 \( 1 - 539.T + 7.95e4T^{2} \)
47 \( 1 + (-111. - 193. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-459. - 265. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-271. + 470. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-116. + 67.0i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (160. - 277. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 416. iT - 3.57e5T^{2} \)
73 \( 1 + (472. + 272. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (-161. - 279. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 - 885.T + 5.71e5T^{2} \)
89 \( 1 + (-812. - 1.40e3i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 739. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98917144601985574552140737453, −9.275042404508881168543669655596, −9.008475249509043586330934993072, −7.901961282432339602395946395450, −7.04810378547477394532240694890, −5.43096131548632689739620788066, −4.53806058012482604439219107525, −3.95405226611735862906662311006, −2.51792118825530157534471730859, −0.77958743585801421946128310638, 0.974010489005056213576194949680, 3.09139190287186938573367495421, 3.78310600917470060203299546731, 5.19404885417423976064274342232, 5.99279891071463242542492158945, 7.03080285175614448362427431516, 7.77462902914007745861279506216, 8.989345118920122945023496833506, 10.29625153520183658839687164095, 10.54972398323479657506806974242

Graph of the $Z$-function along the critical line