Properties

Label 2-21e2-147.101-c1-0-9
Degree $2$
Conductor $441$
Sign $-0.390 + 0.920i$
Analytic cond. $3.52140$
Root an. cond. $1.87654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.02 − 0.401i)2-s + (−0.580 − 0.538i)4-s + (−1.00 − 0.687i)5-s + (2.62 − 0.364i)7-s + (1.33 + 2.76i)8-s + (0.755 + 1.10i)10-s + (−0.0890 − 0.590i)11-s + (2.95 − 2.35i)13-s + (−2.82 − 0.679i)14-s + (−0.133 − 1.78i)16-s + (−2.61 − 0.808i)17-s + (0.127 − 0.0734i)19-s + (0.214 + 0.941i)20-s + (−0.146 + 0.640i)22-s + (−2.07 − 6.71i)23-s + ⋯
L(s)  = 1  + (−0.723 − 0.283i)2-s + (−0.290 − 0.269i)4-s + (−0.450 − 0.307i)5-s + (0.990 − 0.137i)7-s + (0.470 + 0.977i)8-s + (0.238 + 0.350i)10-s + (−0.0268 − 0.178i)11-s + (0.819 − 0.653i)13-s + (−0.755 − 0.181i)14-s + (−0.0334 − 0.446i)16-s + (−0.635 − 0.195i)17-s + (0.0292 − 0.0168i)19-s + (0.0480 + 0.210i)20-s + (−0.0311 + 0.136i)22-s + (−0.431 − 1.39i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-0.390 + 0.920i$
Analytic conductor: \(3.52140\)
Root analytic conductor: \(1.87654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{441} (395, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :1/2),\ -0.390 + 0.920i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.412298 - 0.622823i\)
\(L(\frac12)\) \(\approx\) \(0.412298 - 0.622823i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-2.62 + 0.364i)T \)
good2 \( 1 + (1.02 + 0.401i)T + (1.46 + 1.36i)T^{2} \)
5 \( 1 + (1.00 + 0.687i)T + (1.82 + 4.65i)T^{2} \)
11 \( 1 + (0.0890 + 0.590i)T + (-10.5 + 3.24i)T^{2} \)
13 \( 1 + (-2.95 + 2.35i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (2.61 + 0.808i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (-0.127 + 0.0734i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.07 + 6.71i)T + (-19.0 + 12.9i)T^{2} \)
29 \( 1 + (2.75 - 0.628i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (4.54 + 2.62i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.323 - 0.300i)T + (2.76 - 36.8i)T^{2} \)
41 \( 1 + (-4.98 + 2.39i)T + (25.5 - 32.0i)T^{2} \)
43 \( 1 + (-1.07 - 0.517i)T + (26.8 + 33.6i)T^{2} \)
47 \( 1 + (1.29 - 3.30i)T + (-34.4 - 31.9i)T^{2} \)
53 \( 1 + (-8.63 + 9.30i)T + (-3.96 - 52.8i)T^{2} \)
59 \( 1 + (-1.25 + 0.858i)T + (21.5 - 54.9i)T^{2} \)
61 \( 1 + (9.59 + 10.3i)T + (-4.55 + 60.8i)T^{2} \)
67 \( 1 + (1.69 - 2.93i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-6.84 - 1.56i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (14.5 - 5.69i)T + (53.5 - 49.6i)T^{2} \)
79 \( 1 + (-5.62 - 9.74i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-4.09 + 5.14i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (-3.27 - 0.493i)T + (85.0 + 26.2i)T^{2} \)
97 \( 1 - 12.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90065185070907599168262660509, −10.00639474612473120485073622239, −8.822923597816386357216354724704, −8.366401870188092165293974895063, −7.55621499123487557101169051318, −6.02619134257371748230632312655, −4.95029697787852921029160094899, −4.03790022138479593119271032724, −2.13492967080351447511431834771, −0.64786181518213158073077090665, 1.62721877149351068458249528010, 3.61007919565813385666159313605, 4.46999510885093337903064151464, 5.84825924873216788145578835626, 7.23918865828213779080359665864, 7.69597091234727365918760476197, 8.756225726678735442546208293599, 9.263706681878415466787151693854, 10.52307051100175908142258434848, 11.30542091347337477092815073562

Graph of the $Z$-function along the critical line