Properties

Label 2-21e2-1.1-c5-0-78
Degree $2$
Conductor $441$
Sign $-1$
Analytic cond. $70.7292$
Root an. cond. $8.41006$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 68·4-s − 56·5-s + 360·8-s − 560·10-s − 232·11-s + 140·13-s + 1.42e3·16-s − 1.72e3·17-s + 98·19-s − 3.80e3·20-s − 2.32e3·22-s − 1.82e3·23-s + 11·25-s + 1.40e3·26-s − 3.41e3·29-s + 7.64e3·31-s + 2.72e3·32-s − 1.72e4·34-s − 1.03e4·37-s + 980·38-s − 2.01e4·40-s − 1.79e4·41-s + 1.08e4·43-s − 1.57e4·44-s − 1.82e4·46-s + 9.32e3·47-s + ⋯
L(s)  = 1  + 1.76·2-s + 17/8·4-s − 1.00·5-s + 1.98·8-s − 1.77·10-s − 0.578·11-s + 0.229·13-s + 1.39·16-s − 1.44·17-s + 0.0622·19-s − 2.12·20-s − 1.02·22-s − 0.718·23-s + 0.00351·25-s + 0.406·26-s − 0.754·29-s + 1.42·31-s + 0.469·32-s − 2.55·34-s − 1.24·37-s + 0.110·38-s − 1.99·40-s − 1.66·41-s + 0.897·43-s − 1.22·44-s − 1.27·46-s + 0.615·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(70.7292\)
Root analytic conductor: \(8.41006\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 441,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 5 p T + p^{5} T^{2} \)
5 \( 1 + 56 T + p^{5} T^{2} \)
11 \( 1 + 232 T + p^{5} T^{2} \)
13 \( 1 - 140 T + p^{5} T^{2} \)
17 \( 1 + 1722 T + p^{5} T^{2} \)
19 \( 1 - 98 T + p^{5} T^{2} \)
23 \( 1 + 1824 T + p^{5} T^{2} \)
29 \( 1 + 3418 T + p^{5} T^{2} \)
31 \( 1 - 7644 T + p^{5} T^{2} \)
37 \( 1 + 10398 T + p^{5} T^{2} \)
41 \( 1 + 17962 T + p^{5} T^{2} \)
43 \( 1 - 10880 T + p^{5} T^{2} \)
47 \( 1 - 9324 T + p^{5} T^{2} \)
53 \( 1 + 2262 T + p^{5} T^{2} \)
59 \( 1 + 2730 T + p^{5} T^{2} \)
61 \( 1 + 25648 T + p^{5} T^{2} \)
67 \( 1 + 48404 T + p^{5} T^{2} \)
71 \( 1 - 58560 T + p^{5} T^{2} \)
73 \( 1 + 68082 T + p^{5} T^{2} \)
79 \( 1 - 31784 T + p^{5} T^{2} \)
83 \( 1 + 20538 T + p^{5} T^{2} \)
89 \( 1 + 50582 T + p^{5} T^{2} \)
97 \( 1 - 58506 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33145570929293011485337795167, −8.734901348613176033973460375295, −7.69420423533473828724706572863, −6.81957346608229485910790327923, −5.88572278957813546691275192521, −4.78461159818991410679145984901, −4.09144905346805858433115117504, −3.16081894666775625652676117077, −2.01625118911369290174183254413, 0, 2.01625118911369290174183254413, 3.16081894666775625652676117077, 4.09144905346805858433115117504, 4.78461159818991410679145984901, 5.88572278957813546691275192521, 6.81957346608229485910790327923, 7.69420423533473828724706572863, 8.734901348613176033973460375295, 10.33145570929293011485337795167

Graph of the $Z$-function along the critical line