L(s) = 1 | − 8.71·2-s + 44.0·4-s + 99.6·5-s − 104.·8-s − 868.·10-s − 374.·11-s − 868.·13-s − 495.·16-s − 1.09e3·17-s + 868.·19-s + 4.38e3·20-s + 3.26e3·22-s − 2.97e3·23-s + 6.81e3·25-s + 7.57e3·26-s − 4.51e3·29-s + 9.55e3·31-s + 7.67e3·32-s + 9.55e3·34-s − 5.46e3·37-s − 7.57e3·38-s − 1.04e4·40-s + 9.86e3·41-s + 1.25e4·43-s − 1.64e4·44-s + 2.59e4·46-s − 9.96e3·47-s + ⋯ |
L(s) = 1 | − 1.54·2-s + 1.37·4-s + 1.78·5-s − 0.577·8-s − 2.74·10-s − 0.934·11-s − 1.42·13-s − 0.484·16-s − 0.920·17-s + 0.552·19-s + 2.45·20-s + 1.43·22-s − 1.17·23-s + 2.17·25-s + 2.19·26-s − 0.997·29-s + 1.78·31-s + 1.32·32-s + 1.41·34-s − 0.656·37-s − 0.851·38-s − 1.03·40-s + 0.916·41-s + 1.03·43-s − 1.28·44-s + 1.80·46-s − 0.658·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.033037726\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.033037726\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 8.71T + 32T^{2} \) |
| 5 | \( 1 - 99.6T + 3.12e3T^{2} \) |
| 11 | \( 1 + 374.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 868.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.09e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 868.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 2.97e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 4.51e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 9.55e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 5.46e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 9.86e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.25e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 9.96e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.51e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 4.26e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.77e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 2.99e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 6.14e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 4.86e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 8.01e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.07e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 2.08e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.33e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01015322203446663166776863004, −9.614650277829324596515882951277, −8.734885775660009357004828742329, −7.71835188413746008534190390353, −6.83634976645678234408659301862, −5.80704525982976321065939816160, −4.79985514173157832634995153298, −2.46402227605604235518291952307, −2.07448286025208288819501452141, −0.64281853804916858282983261597,
0.64281853804916858282983261597, 2.07448286025208288819501452141, 2.46402227605604235518291952307, 4.79985514173157832634995153298, 5.80704525982976321065939816160, 6.83634976645678234408659301862, 7.71835188413746008534190390353, 8.734885775660009357004828742329, 9.614650277829324596515882951277, 10.01015322203446663166776863004