# Properties

 Label 2-21e2-1.1-c3-0-48 Degree $2$ Conductor $441$ Sign $-1$ Analytic cond. $26.0198$ Root an. cond. $5.10096$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $1$

# Related objects

## Dirichlet series

 L(s)  = 1 + 4.35·2-s + 11.0·4-s − 8.71·5-s + 13.0·8-s − 38.0·10-s − 43.5·11-s − 82·13-s − 30.9·16-s + 78.4·17-s + 20·19-s − 95.8·20-s − 190.·22-s − 130.·23-s − 48.9·25-s − 357.·26-s + 244.·29-s − 156·31-s − 239.·32-s + 342.·34-s + 186·37-s + 87.1·38-s − 114.·40-s + 165.·41-s + 164·43-s − 479.·44-s − 570·46-s − 470.·47-s + ⋯
 L(s)  = 1 + 1.54·2-s + 1.37·4-s − 0.779·5-s + 0.577·8-s − 1.20·10-s − 1.19·11-s − 1.74·13-s − 0.484·16-s + 1.11·17-s + 0.241·19-s − 1.07·20-s − 1.84·22-s − 1.18·23-s − 0.391·25-s − 2.69·26-s + 1.56·29-s − 0.903·31-s − 1.32·32-s + 1.72·34-s + 0.826·37-s + 0.372·38-s − 0.450·40-s + 0.630·41-s + 0.581·43-s − 1.64·44-s − 1.82·46-s − 1.46·47-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$441$$    =    $$3^{2} \cdot 7^{2}$$ Sign: $-1$ Analytic conductor: $$26.0198$$ Root analytic conductor: $$5.10096$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{441} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(2,\ 441,\ (\ :3/2),\ -1)$$

## Particular Values

 $$L(2)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 - 4.35T + 8T^{2}$$
5 $$1 + 8.71T + 125T^{2}$$
11 $$1 + 43.5T + 1.33e3T^{2}$$
13 $$1 + 82T + 2.19e3T^{2}$$
17 $$1 - 78.4T + 4.91e3T^{2}$$
19 $$1 - 20T + 6.85e3T^{2}$$
23 $$1 + 130.T + 1.21e4T^{2}$$
29 $$1 - 244.T + 2.43e4T^{2}$$
31 $$1 + 156T + 2.97e4T^{2}$$
37 $$1 - 186T + 5.06e4T^{2}$$
41 $$1 - 165.T + 6.89e4T^{2}$$
43 $$1 - 164T + 7.95e4T^{2}$$
47 $$1 + 470.T + 1.03e5T^{2}$$
53 $$1 + 156.T + 1.48e5T^{2}$$
59 $$1 + 156.T + 2.05e5T^{2}$$
61 $$1 + 790T + 2.26e5T^{2}$$
67 $$1 + 44T + 3.00e5T^{2}$$
71 $$1 - 444.T + 3.57e5T^{2}$$
73 $$1 + 126T + 3.89e5T^{2}$$
79 $$1 + 712T + 4.93e5T^{2}$$
83 $$1 - 1.46e3T + 5.71e5T^{2}$$
89 $$1 - 1.45e3T + 7.04e5T^{2}$$
97 $$1 + 798T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.46559372525091224731249065020, −9.573169880702170772963716470530, −7.909134751528004526970981458762, −7.49819997417493070043462556601, −6.16015286910046052516033990741, −5.16975761149035710415937994111, −4.49473345724366268152022215927, −3.32449659341915639420278778702, −2.40500208686536614592774595713, 0, 2.40500208686536614592774595713, 3.32449659341915639420278778702, 4.49473345724366268152022215927, 5.16975761149035710415937994111, 6.16015286910046052516033990741, 7.49819997417493070043462556601, 7.909134751528004526970981458762, 9.573169880702170772963716470530, 10.46559372525091224731249065020