L(s) = 1 | − 3-s + 1.69·5-s − 7-s + 9-s + 5.84·11-s + 13-s − 1.69·15-s + 0.964·17-s + 6.58·19-s + 21-s − 7.18·23-s − 2.11·25-s − 27-s + 8.58·29-s − 5.54·31-s − 5.84·33-s − 1.69·35-s + 0.964·37-s − 39-s − 4.88·41-s − 7.18·43-s + 1.69·45-s + 4.73·47-s + 49-s − 0.964·51-s + 13.0·53-s + 9.93·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.759·5-s − 0.377·7-s + 0.333·9-s + 1.76·11-s + 0.277·13-s − 0.438·15-s + 0.233·17-s + 1.51·19-s + 0.218·21-s − 1.49·23-s − 0.422·25-s − 0.192·27-s + 1.59·29-s − 0.996·31-s − 1.01·33-s − 0.287·35-s + 0.158·37-s − 0.160·39-s − 0.762·41-s − 1.09·43-s + 0.253·45-s + 0.690·47-s + 0.142·49-s − 0.134·51-s + 1.78·53-s + 1.33·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.879207808\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.879207808\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 - 1.69T + 5T^{2} \) |
| 11 | \( 1 - 5.84T + 11T^{2} \) |
| 17 | \( 1 - 0.964T + 17T^{2} \) |
| 19 | \( 1 - 6.58T + 19T^{2} \) |
| 23 | \( 1 + 7.18T + 23T^{2} \) |
| 29 | \( 1 - 8.58T + 29T^{2} \) |
| 31 | \( 1 + 5.54T + 31T^{2} \) |
| 37 | \( 1 - 0.964T + 37T^{2} \) |
| 41 | \( 1 + 4.88T + 41T^{2} \) |
| 43 | \( 1 + 7.18T + 43T^{2} \) |
| 47 | \( 1 - 4.73T + 47T^{2} \) |
| 53 | \( 1 - 13.0T + 53T^{2} \) |
| 59 | \( 1 + 4.81T + 59T^{2} \) |
| 61 | \( 1 - 13.2T + 61T^{2} \) |
| 67 | \( 1 + 10.3T + 67T^{2} \) |
| 71 | \( 1 - 4.81T + 71T^{2} \) |
| 73 | \( 1 - 13.1T + 73T^{2} \) |
| 79 | \( 1 + 7.61T + 79T^{2} \) |
| 83 | \( 1 + 0.133T + 83T^{2} \) |
| 89 | \( 1 - 2.73T + 89T^{2} \) |
| 97 | \( 1 + 5.01T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.230289093922695257943290614832, −8.407518736815966993138973496960, −7.29698548455477396110535495236, −6.56853809171674150421873228052, −5.97711329369706833411246555965, −5.28583680920974565499312676872, −4.12919432357728490153279108294, −3.40135721863220317049830975014, −1.96475311513815829271276222176, −0.987432708935437322418875491961,
0.987432708935437322418875491961, 1.96475311513815829271276222176, 3.40135721863220317049830975014, 4.12919432357728490153279108294, 5.28583680920974565499312676872, 5.97711329369706833411246555965, 6.56853809171674150421873228052, 7.29698548455477396110535495236, 8.407518736815966993138973496960, 9.230289093922695257943290614832