Properties

Label 2-2184-1.1-c1-0-12
Degree $2$
Conductor $2184$
Sign $1$
Analytic cond. $17.4393$
Root an. cond. $4.17604$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.69·5-s − 7-s + 9-s + 5.84·11-s + 13-s − 1.69·15-s + 0.964·17-s + 6.58·19-s + 21-s − 7.18·23-s − 2.11·25-s − 27-s + 8.58·29-s − 5.54·31-s − 5.84·33-s − 1.69·35-s + 0.964·37-s − 39-s − 4.88·41-s − 7.18·43-s + 1.69·45-s + 4.73·47-s + 49-s − 0.964·51-s + 13.0·53-s + 9.93·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.759·5-s − 0.377·7-s + 0.333·9-s + 1.76·11-s + 0.277·13-s − 0.438·15-s + 0.233·17-s + 1.51·19-s + 0.218·21-s − 1.49·23-s − 0.422·25-s − 0.192·27-s + 1.59·29-s − 0.996·31-s − 1.01·33-s − 0.287·35-s + 0.158·37-s − 0.160·39-s − 0.762·41-s − 1.09·43-s + 0.253·45-s + 0.690·47-s + 0.142·49-s − 0.134·51-s + 1.78·53-s + 1.33·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2184\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(17.4393\)
Root analytic conductor: \(4.17604\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.879207808\)
\(L(\frac12)\) \(\approx\) \(1.879207808\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - 1.69T + 5T^{2} \)
11 \( 1 - 5.84T + 11T^{2} \)
17 \( 1 - 0.964T + 17T^{2} \)
19 \( 1 - 6.58T + 19T^{2} \)
23 \( 1 + 7.18T + 23T^{2} \)
29 \( 1 - 8.58T + 29T^{2} \)
31 \( 1 + 5.54T + 31T^{2} \)
37 \( 1 - 0.964T + 37T^{2} \)
41 \( 1 + 4.88T + 41T^{2} \)
43 \( 1 + 7.18T + 43T^{2} \)
47 \( 1 - 4.73T + 47T^{2} \)
53 \( 1 - 13.0T + 53T^{2} \)
59 \( 1 + 4.81T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 - 4.81T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 + 7.61T + 79T^{2} \)
83 \( 1 + 0.133T + 83T^{2} \)
89 \( 1 - 2.73T + 89T^{2} \)
97 \( 1 + 5.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.230289093922695257943290614832, −8.407518736815966993138973496960, −7.29698548455477396110535495236, −6.56853809171674150421873228052, −5.97711329369706833411246555965, −5.28583680920974565499312676872, −4.12919432357728490153279108294, −3.40135721863220317049830975014, −1.96475311513815829271276222176, −0.987432708935437322418875491961, 0.987432708935437322418875491961, 1.96475311513815829271276222176, 3.40135721863220317049830975014, 4.12919432357728490153279108294, 5.28583680920974565499312676872, 5.97711329369706833411246555965, 6.56853809171674150421873228052, 7.29698548455477396110535495236, 8.407518736815966993138973496960, 9.230289093922695257943290614832

Graph of the $Z$-function along the critical line