Properties

Label 2-21780-1.1-c1-0-4
Degree $2$
Conductor $21780$
Sign $1$
Analytic cond. $173.914$
Root an. cond. $13.1876$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·13-s + 17-s + 8·19-s + 9·23-s + 25-s + 2·29-s − 9·31-s − 8·37-s + 10·41-s − 6·43-s + 7·47-s − 7·49-s − 3·53-s + 6·59-s − 3·61-s + 2·65-s + 4·67-s + 12·71-s + 12·73-s + 11·79-s − 16·83-s − 85-s − 4·89-s − 8·95-s + 8·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.554·13-s + 0.242·17-s + 1.83·19-s + 1.87·23-s + 1/5·25-s + 0.371·29-s − 1.61·31-s − 1.31·37-s + 1.56·41-s − 0.914·43-s + 1.02·47-s − 49-s − 0.412·53-s + 0.781·59-s − 0.384·61-s + 0.248·65-s + 0.488·67-s + 1.42·71-s + 1.40·73-s + 1.23·79-s − 1.75·83-s − 0.108·85-s − 0.423·89-s − 0.820·95-s + 0.812·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21780\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(173.914\)
Root analytic conductor: \(13.1876\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21780,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.041666691\)
\(L(\frac12)\) \(\approx\) \(2.041666691\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 3 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.54278916995061, −15.06318792821256, −14.38717259717593, −14.08823010517631, −13.36088546205957, −12.72079423140562, −12.34458861225087, −11.73229205451897, −11.07982574222496, −10.82693117900540, −9.911442522612483, −9.408761512121369, −9.000317422773701, −8.185599968164258, −7.608793445933057, −7.085788964584479, −6.690041278945815, −5.513196646580782, −5.275883592939425, −4.612109731002980, −3.623805476709409, −3.243043066025769, −2.445753390608944, −1.405750273501527, −0.6202062904258654, 0.6202062904258654, 1.405750273501527, 2.445753390608944, 3.243043066025769, 3.623805476709409, 4.612109731002980, 5.275883592939425, 5.513196646580782, 6.690041278945815, 7.085788964584479, 7.608793445933057, 8.185599968164258, 9.000317422773701, 9.408761512121369, 9.911442522612483, 10.82693117900540, 11.07982574222496, 11.73229205451897, 12.34458861225087, 12.72079423140562, 13.36088546205957, 14.08823010517631, 14.38717259717593, 15.06318792821256, 15.54278916995061

Graph of the $Z$-function along the critical line