Properties

Label 2-21780-1.1-c1-0-10
Degree $2$
Conductor $21780$
Sign $1$
Analytic cond. $173.914$
Root an. cond. $13.1876$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 6·13-s + 7·17-s + 4·19-s − 3·23-s + 25-s + 4·29-s + 3·31-s − 2·41-s − 4·43-s + 7·47-s − 7·49-s + 5·53-s − 4·59-s − 61-s + 6·65-s + 2·67-s + 10·71-s + 4·73-s + 5·79-s + 12·83-s + 7·85-s + 4·95-s + 6·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.66·13-s + 1.69·17-s + 0.917·19-s − 0.625·23-s + 1/5·25-s + 0.742·29-s + 0.538·31-s − 0.312·41-s − 0.609·43-s + 1.02·47-s − 49-s + 0.686·53-s − 0.520·59-s − 0.128·61-s + 0.744·65-s + 0.244·67-s + 1.18·71-s + 0.468·73-s + 0.562·79-s + 1.31·83-s + 0.759·85-s + 0.410·95-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21780\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(173.914\)
Root analytic conductor: \(13.1876\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21780,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.437045437\)
\(L(\frac12)\) \(\approx\) \(3.437045437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 5 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.58586066264879, −15.06093845297974, −14.27603913060401, −13.87290726905469, −13.59068307696153, −12.86090747772532, −12.19799518471220, −11.82364314316323, −11.15762969675313, −10.49655105467013, −10.07875802641084, −9.488103799359001, −8.909272471023496, −8.044272190381600, −7.985826901384936, −6.964730676212692, −6.365753145909560, −5.798223908641816, −5.320581637632740, −4.546436213044026, −3.533747021958977, −3.359875095190327, −2.324243452290875, −1.358654351162996, −0.8625655939945225, 0.8625655939945225, 1.358654351162996, 2.324243452290875, 3.359875095190327, 3.533747021958977, 4.546436213044026, 5.320581637632740, 5.798223908641816, 6.365753145909560, 6.964730676212692, 7.985826901384936, 8.044272190381600, 8.909272471023496, 9.488103799359001, 10.07875802641084, 10.49655105467013, 11.15762969675313, 11.82364314316323, 12.19799518471220, 12.86090747772532, 13.59068307696153, 13.87290726905469, 14.27603913060401, 15.06093845297974, 15.58586066264879

Graph of the $Z$-function along the critical line