L(s) = 1 | − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s − 2.87·8-s + 9-s + 0.347·11-s + 2.53·12-s − 1.87·13-s − 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s + 1.53·21-s − 0.652·22-s − 2.87·24-s + 3.53·26-s + 27-s + 3.87·28-s + 29-s − 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s − 1.87·39-s − 41-s + ⋯ |
L(s) = 1 | − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s − 2.87·8-s + 9-s + 0.347·11-s + 2.53·12-s − 1.87·13-s − 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s + 1.53·21-s − 0.652·22-s − 2.87·24-s + 3.53·26-s + 27-s + 3.87·28-s + 29-s − 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s − 1.87·39-s − 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8657478825\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8657478825\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 + 1.87T + T^{2} \) |
| 7 | \( 1 - 1.53T + T^{2} \) |
| 11 | \( 1 - 0.347T + T^{2} \) |
| 13 | \( 1 + 1.87T + T^{2} \) |
| 17 | \( 1 - 0.347T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.53T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 0.347T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.87T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.177276752625871114300195073054, −8.408644787817091106536694094947, −7.991267099831890594699457123940, −7.31490326498810007029635375582, −6.80849427207487440746421475832, −5.33594900268624110175744969100, −4.33743472566190014343759443314, −2.83614782990033014927984572165, −2.13497346391147626444047201176, −1.25939835582413232369720352277,
1.25939835582413232369720352277, 2.13497346391147626444047201176, 2.83614782990033014927984572165, 4.33743472566190014343759443314, 5.33594900268624110175744969100, 6.80849427207487440746421475832, 7.31490326498810007029635375582, 7.991267099831890594699457123940, 8.408644787817091106536694094947, 9.177276752625871114300195073054