Properties

Label 2-2175-87.86-c0-0-9
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s − 2.87·8-s + 9-s + 0.347·11-s + 2.53·12-s − 1.87·13-s − 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s + 1.53·21-s − 0.652·22-s − 2.87·24-s + 3.53·26-s + 27-s + 3.87·28-s + 29-s − 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s − 1.87·39-s − 41-s + ⋯
L(s)  = 1  − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s − 2.87·8-s + 9-s + 0.347·11-s + 2.53·12-s − 1.87·13-s − 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s + 1.53·21-s − 0.652·22-s − 2.87·24-s + 3.53·26-s + 27-s + 3.87·28-s + 29-s − 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s − 1.87·39-s − 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8657478825\)
\(L(\frac12)\) \(\approx\) \(0.8657478825\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 1.87T + T^{2} \)
7 \( 1 - 1.53T + T^{2} \)
11 \( 1 - 0.347T + T^{2} \)
13 \( 1 + 1.87T + T^{2} \)
17 \( 1 - 0.347T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.53T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 0.347T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 1.87T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.177276752625871114300195073054, −8.408644787817091106536694094947, −7.991267099831890594699457123940, −7.31490326498810007029635375582, −6.80849427207487440746421475832, −5.33594900268624110175744969100, −4.33743472566190014343759443314, −2.83614782990033014927984572165, −2.13497346391147626444047201176, −1.25939835582413232369720352277, 1.25939835582413232369720352277, 2.13497346391147626444047201176, 2.83614782990033014927984572165, 4.33743472566190014343759443314, 5.33594900268624110175744969100, 6.80849427207487440746421475832, 7.31490326498810007029635375582, 7.991267099831890594699457123940, 8.408644787817091106536694094947, 9.177276752625871114300195073054

Graph of the $Z$-function along the critical line