Properties

Label 2-2175-87.86-c0-0-7
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·2-s + 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s − 0.652·8-s + 9-s + 1.53·11-s − 0.879·12-s + 0.347·13-s − 0.652·14-s + 0.652·16-s + 1.53·17-s + 0.347·18-s − 1.87·21-s + 0.532·22-s − 0.652·24-s + 0.120·26-s + 27-s + 1.65·28-s + 29-s + 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s + 0.347·39-s − 41-s + ⋯
L(s)  = 1  + 0.347·2-s + 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s − 0.652·8-s + 9-s + 1.53·11-s − 0.879·12-s + 0.347·13-s − 0.652·14-s + 0.652·16-s + 1.53·17-s + 0.347·18-s − 1.87·21-s + 0.532·22-s − 0.652·24-s + 0.120·26-s + 27-s + 1.65·28-s + 29-s + 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s + 0.347·39-s − 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.501675650\)
\(L(\frac12)\) \(\approx\) \(1.501675650\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 0.347T + T^{2} \)
7 \( 1 + 1.87T + T^{2} \)
11 \( 1 - 1.53T + T^{2} \)
13 \( 1 - 0.347T + T^{2} \)
17 \( 1 - 1.53T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + 1.87T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.53T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 0.347T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.257938083134648147928482854709, −8.691383616737742119879953717882, −7.86389041499769093945870291767, −6.68791974876211866439026023359, −6.34545213277789513529148227185, −5.19004193341438494320000767310, −3.98505075658530088173752754451, −3.54680228661875330699676854351, −2.94212328958274825648708830591, −1.18432516009006482961781076353, 1.18432516009006482961781076353, 2.94212328958274825648708830591, 3.54680228661875330699676854351, 3.98505075658530088173752754451, 5.19004193341438494320000767310, 6.34545213277789513529148227185, 6.68791974876211866439026023359, 7.86389041499769093945870291767, 8.691383616737742119879953717882, 9.257938083134648147928482854709

Graph of the $Z$-function along the critical line