Properties

Label 2-2175-87.86-c0-0-15
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53·2-s + 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s + 0.532·8-s + 9-s − 1.87·11-s + 1.34·12-s + 1.53·13-s + 0.532·14-s − 0.532·16-s − 1.87·17-s + 1.53·18-s + 0.347·21-s − 2.87·22-s + 0.532·24-s + 2.34·26-s + 27-s + 0.467·28-s + 29-s − 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s + 1.53·39-s − 41-s + ⋯
L(s)  = 1  + 1.53·2-s + 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s + 0.532·8-s + 9-s − 1.87·11-s + 1.34·12-s + 1.53·13-s + 0.532·14-s − 0.532·16-s − 1.87·17-s + 1.53·18-s + 0.347·21-s − 2.87·22-s + 0.532·24-s + 2.34·26-s + 27-s + 0.467·28-s + 29-s − 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s + 1.53·39-s − 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.472985541\)
\(L(\frac12)\) \(\approx\) \(3.472985541\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 1.53T + T^{2} \)
7 \( 1 - 0.347T + T^{2} \)
11 \( 1 + 1.87T + T^{2} \)
13 \( 1 - 1.53T + T^{2} \)
17 \( 1 + 1.87T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 0.347T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 1.87T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 1.53T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.937358910039032905223899949070, −8.494633627676454630941195560178, −7.66275555624468185180681167655, −6.72796410866918711335748441382, −6.02107150574453049313613739909, −4.93788023362431131508179829057, −4.47194071957267156608671701903, −3.49223951512014967179331160779, −2.74687679771882961240533101605, −1.93764703926138004375136775211, 1.93764703926138004375136775211, 2.74687679771882961240533101605, 3.49223951512014967179331160779, 4.47194071957267156608671701903, 4.93788023362431131508179829057, 6.02107150574453049313613739909, 6.72796410866918711335748441382, 7.66275555624468185180681167655, 8.494633627676454630941195560178, 8.937358910039032905223899949070

Graph of the $Z$-function along the critical line