L(s) = 1 | + 1.53·2-s + 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s + 0.532·8-s + 9-s − 1.87·11-s + 1.34·12-s + 1.53·13-s + 0.532·14-s − 0.532·16-s − 1.87·17-s + 1.53·18-s + 0.347·21-s − 2.87·22-s + 0.532·24-s + 2.34·26-s + 27-s + 0.467·28-s + 29-s − 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s + 1.53·39-s − 41-s + ⋯ |
L(s) = 1 | + 1.53·2-s + 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s + 0.532·8-s + 9-s − 1.87·11-s + 1.34·12-s + 1.53·13-s + 0.532·14-s − 0.532·16-s − 1.87·17-s + 1.53·18-s + 0.347·21-s − 2.87·22-s + 0.532·24-s + 2.34·26-s + 27-s + 0.467·28-s + 29-s − 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s + 1.53·39-s − 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.472985541\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.472985541\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 1.53T + T^{2} \) |
| 7 | \( 1 - 0.347T + T^{2} \) |
| 11 | \( 1 + 1.87T + T^{2} \) |
| 13 | \( 1 - 1.53T + T^{2} \) |
| 17 | \( 1 + 1.87T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 0.347T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 1.87T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.53T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.937358910039032905223899949070, −8.494633627676454630941195560178, −7.66275555624468185180681167655, −6.72796410866918711335748441382, −6.02107150574453049313613739909, −4.93788023362431131508179829057, −4.47194071957267156608671701903, −3.49223951512014967179331160779, −2.74687679771882961240533101605, −1.93764703926138004375136775211,
1.93764703926138004375136775211, 2.74687679771882961240533101605, 3.49223951512014967179331160779, 4.47194071957267156608671701903, 4.93788023362431131508179829057, 6.02107150574453049313613739909, 6.72796410866918711335748441382, 7.66275555624468185180681167655, 8.494633627676454630941195560178, 8.937358910039032905223899949070