L(s) = 1 | + 1.87·2-s − 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s + 2.87·8-s + 9-s − 0.347·11-s − 2.53·12-s − 1.87·13-s + 2.87·14-s + 2.87·16-s − 0.347·17-s + 1.87·18-s − 1.53·21-s − 0.652·22-s − 2.87·24-s − 3.53·26-s − 27-s + 3.87·28-s − 29-s + 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯ |
L(s) = 1 | + 1.87·2-s − 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s + 2.87·8-s + 9-s − 0.347·11-s − 2.53·12-s − 1.87·13-s + 2.87·14-s + 2.87·16-s − 0.347·17-s + 1.87·18-s − 1.53·21-s − 0.652·22-s − 2.87·24-s − 3.53·26-s − 27-s + 3.87·28-s − 29-s + 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
1
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(1826,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 1)
|
Particular Values
L(21) |
≈ |
2.957401297 |
L(21) |
≈ |
2.957401297 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1−1.87T+T2 |
| 7 | 1−1.53T+T2 |
| 11 | 1+0.347T+T2 |
| 13 | 1+1.87T+T2 |
| 17 | 1+0.347T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1−T+T2 |
| 43 | 1−T2 |
| 47 | 1+1.53T+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−0.347T+T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−1.87T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.523391246911277236197277394714, −7.898304037184150965892262877441, −7.43982266164931105211698921052, −6.68578315958118128747274737475, −5.72934784548585606706766407868, −4.99712873200408410429398761002, −4.80202232634207885304732900559, −3.92581744283433777952756655802, −2.51610797159669187321861614201, −1.73070337497445164535221643354,
1.73070337497445164535221643354, 2.51610797159669187321861614201, 3.92581744283433777952756655802, 4.80202232634207885304732900559, 4.99712873200408410429398761002, 5.72934784548585606706766407868, 6.68578315958118128747274737475, 7.43982266164931105211698921052, 7.898304037184150965892262877441, 9.523391246911277236197277394714