Properties

Label 2-2175-87.86-c0-0-14
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.87·2-s − 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s + 2.87·8-s + 9-s − 0.347·11-s − 2.53·12-s − 1.87·13-s + 2.87·14-s + 2.87·16-s − 0.347·17-s + 1.87·18-s − 1.53·21-s − 0.652·22-s − 2.87·24-s − 3.53·26-s − 27-s + 3.87·28-s − 29-s + 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯
L(s)  = 1  + 1.87·2-s − 3-s + 2.53·4-s − 1.87·6-s + 1.53·7-s + 2.87·8-s + 9-s − 0.347·11-s − 2.53·12-s − 1.87·13-s + 2.87·14-s + 2.87·16-s − 0.347·17-s + 1.87·18-s − 1.53·21-s − 0.652·22-s − 2.87·24-s − 3.53·26-s − 27-s + 3.87·28-s − 29-s + 2.53·32-s + 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.957401297\)
\(L(\frac12)\) \(\approx\) \(2.957401297\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 1.87T + T^{2} \)
7 \( 1 - 1.53T + T^{2} \)
11 \( 1 + 0.347T + T^{2} \)
13 \( 1 + 1.87T + T^{2} \)
17 \( 1 + 0.347T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + 1.53T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 0.347T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 1.87T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.523391246911277236197277394714, −7.898304037184150965892262877441, −7.43982266164931105211698921052, −6.68578315958118128747274737475, −5.72934784548585606706766407868, −4.99712873200408410429398761002, −4.80202232634207885304732900559, −3.92581744283433777952756655802, −2.51610797159669187321861614201, −1.73070337497445164535221643354, 1.73070337497445164535221643354, 2.51610797159669187321861614201, 3.92581744283433777952756655802, 4.80202232634207885304732900559, 4.99712873200408410429398761002, 5.72934784548585606706766407868, 6.68578315958118128747274737475, 7.43982266164931105211698921052, 7.898304037184150965892262877441, 9.523391246911277236197277394714

Graph of the $Z$-function along the critical line