Properties

Label 2-2175-87.86-c0-0-10
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 6-s + 7-s + 8-s + 9-s + 11-s + 13-s − 14-s − 16-s − 17-s − 18-s + 21-s − 22-s + 24-s − 26-s + 27-s − 29-s + 33-s + 34-s + 39-s − 2·41-s − 42-s − 47-s − 48-s − 51-s − 54-s + ⋯
L(s)  = 1  − 2-s + 3-s − 6-s + 7-s + 8-s + 9-s + 11-s + 13-s − 14-s − 16-s − 17-s − 18-s + 21-s − 22-s + 24-s − 26-s + 27-s − 29-s + 33-s + 34-s + 39-s − 2·41-s − 42-s − 47-s − 48-s − 51-s − 54-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.134814488\)
\(L(\frac12)\) \(\approx\) \(1.134814488\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + T + T^{2} \)
7 \( 1 - T + T^{2} \)
11 \( 1 - T + T^{2} \)
13 \( 1 - T + T^{2} \)
17 \( 1 + T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 + T )^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 + T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( 1 - T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153959867801180873893851027942, −8.398351881897981225837760183037, −8.197901742371325386932054234321, −7.18162872944690970488579657090, −6.51619990310614610270293874950, −5.07453381302967518027552296225, −4.25366982859792321760234730509, −3.53528095117272459216884786099, −1.97497682296563613442347329683, −1.37778745196513544815207440794, 1.37778745196513544815207440794, 1.97497682296563613442347329683, 3.53528095117272459216884786099, 4.25366982859792321760234730509, 5.07453381302967518027552296225, 6.51619990310614610270293874950, 7.18162872944690970488579657090, 8.197901742371325386932054234321, 8.398351881897981225837760183037, 9.153959867801180873893851027942

Graph of the $Z$-function along the critical line