L(s) = 1 | − 1.87i·2-s − i·3-s − 2.53·4-s − 1.87·6-s − 1.53i·7-s + 2.87i·8-s − 9-s − 0.347·11-s + 2.53i·12-s − 1.87i·13-s − 2.87·14-s + 2.87·16-s + 0.347i·17-s + 1.87i·18-s − 1.53·21-s + 0.652i·22-s + ⋯ |
L(s) = 1 | − 1.87i·2-s − i·3-s − 2.53·4-s − 1.87·6-s − 1.53i·7-s + 2.87i·8-s − 9-s − 0.347·11-s + 2.53i·12-s − 1.87i·13-s − 2.87·14-s + 2.87·16-s + 0.347i·17-s + 1.87i·18-s − 1.53·21-s + 0.652i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7699113144\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7699113144\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 + 1.87iT - T^{2} \) |
| 7 | \( 1 + 1.53iT - T^{2} \) |
| 11 | \( 1 + 0.347T + T^{2} \) |
| 13 | \( 1 + 1.87iT - T^{2} \) |
| 17 | \( 1 - 0.347iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - 1.53iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 0.347iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.87T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.647937042684188351803014590194, −7.961737743587762001713005965490, −7.42376918599719405307017080864, −6.13378364356315335638082733306, −5.15863694830878826220903695214, −4.22692813553507140304874873045, −3.25624927978870964100807954002, −2.66794085219172610065449103803, −1.35548121006515235899879292803, −0.59307221157721873904594030647,
2.46164880092221341098034529901, 3.82006731852525174849727657097, 4.69381539196767019473620969287, 5.20672566668728024673586175719, 6.02033580658454346769357605457, 6.56914893171827255655266655194, 7.54605390217298435507639834430, 8.631133837735891416794324199487, 8.787358693339412918670150294845, 9.461594426662689311063538568132