L(s) = 1 | − 1.87i·2-s − i·3-s − 2.53·4-s − 1.87·6-s − 1.53i·7-s + 2.87i·8-s − 9-s − 0.347·11-s + 2.53i·12-s − 1.87i·13-s − 2.87·14-s + 2.87·16-s + 0.347i·17-s + 1.87i·18-s − 1.53·21-s + 0.652i·22-s + ⋯ |
L(s) = 1 | − 1.87i·2-s − i·3-s − 2.53·4-s − 1.87·6-s − 1.53i·7-s + 2.87i·8-s − 9-s − 0.347·11-s + 2.53i·12-s − 1.87i·13-s − 2.87·14-s + 2.87·16-s + 0.347i·17-s + 1.87i·18-s − 1.53·21-s + 0.652i·22-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(2174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 0.447−0.894i)
|
Particular Values
L(21) |
≈ |
0.7699113144 |
L(21) |
≈ |
0.7699113144 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+1.87iT−T2 |
| 7 | 1+1.53iT−T2 |
| 11 | 1+0.347T+T2 |
| 13 | 1+1.87iT−T2 |
| 17 | 1−0.347iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−T+T2 |
| 43 | 1+T2 |
| 47 | 1−1.53iT−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+0.347iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+1.87T+T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.647937042684188351803014590194, −7.961737743587762001713005965490, −7.42376918599719405307017080864, −6.13378364356315335638082733306, −5.15863694830878826220903695214, −4.22692813553507140304874873045, −3.25624927978870964100807954002, −2.66794085219172610065449103803, −1.35548121006515235899879292803, −0.59307221157721873904594030647,
2.46164880092221341098034529901, 3.82006731852525174849727657097, 4.69381539196767019473620969287, 5.20672566668728024673586175719, 6.02033580658454346769357605457, 6.56914893171827255655266655194, 7.54605390217298435507639834430, 8.631133837735891416794324199487, 8.787358693339412918670150294845, 9.461594426662689311063538568132