| L(s) = 1 | − 1.53i·2-s + i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s + 0.532i·8-s − 9-s − 1.87·11-s − 1.34i·12-s + 1.53i·13-s − 0.532·14-s − 0.532·16-s + 1.87i·17-s + 1.53i·18-s + 0.347·21-s + 2.87i·22-s + ⋯ |
| L(s) = 1 | − 1.53i·2-s + i·3-s − 1.34·4-s + 1.53·6-s − 0.347i·7-s + 0.532i·8-s − 9-s − 1.87·11-s − 1.34i·12-s + 1.53i·13-s − 0.532·14-s − 0.532·16-s + 1.87i·17-s + 1.53i·18-s + 0.347·21-s + 2.87i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4705855295\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4705855295\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
| good | 2 | \( 1 + 1.53iT - T^{2} \) |
| 7 | \( 1 + 0.347iT - T^{2} \) |
| 11 | \( 1 + 1.87T + T^{2} \) |
| 13 | \( 1 - 1.53iT - T^{2} \) |
| 17 | \( 1 - 1.87iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 0.347iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.87iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.53T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.794664496049774914349793300550, −8.842289165057299589484617289619, −8.303877059851758213174890045515, −7.15368005895162563293798798638, −5.95599638642109390814397575020, −5.04573130507909009545061965652, −4.18238621047646188466607106595, −3.68358561489941601004838613502, −2.63092421854304962046399015711, −1.79161249331612592450483384027,
0.30197695048536623300829006736, 2.38606741449672637671138149564, 3.08517586013256609681273757950, 5.02567961140049885902652765560, 5.32266525152502721051546961128, 5.96799289749568700923953124413, 6.98750338964348973994925404829, 7.61005305031405771143167606347, 7.928101495684215172776214488396, 8.676462234252508220536862889354