Properties

Label 2-2175-1.1-c3-0-27
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.26·2-s − 3·3-s − 6.40·4-s − 3.78·6-s + 13.4·7-s − 18.1·8-s + 9·9-s − 1.30·11-s + 19.2·12-s − 85.6·13-s + 16.9·14-s + 28.3·16-s − 67.9·17-s + 11.3·18-s − 63.3·19-s − 40.2·21-s − 1.65·22-s + 139.·23-s + 54.5·24-s − 108.·26-s − 27·27-s − 86.0·28-s − 29·29-s − 170.·31-s + 181.·32-s + 3.92·33-s − 85.7·34-s + ⋯
L(s)  = 1  + 0.446·2-s − 0.577·3-s − 0.800·4-s − 0.257·6-s + 0.725·7-s − 0.803·8-s + 0.333·9-s − 0.0358·11-s + 0.462·12-s − 1.82·13-s + 0.323·14-s + 0.442·16-s − 0.969·17-s + 0.148·18-s − 0.764·19-s − 0.418·21-s − 0.0160·22-s + 1.26·23-s + 0.463·24-s − 0.815·26-s − 0.192·27-s − 0.580·28-s − 0.185·29-s − 0.987·31-s + 1.00·32-s + 0.0207·33-s − 0.432·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8086071464\)
\(L(\frac12)\) \(\approx\) \(0.8086071464\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 + 29T \)
good2 \( 1 - 1.26T + 8T^{2} \)
7 \( 1 - 13.4T + 343T^{2} \)
11 \( 1 + 1.30T + 1.33e3T^{2} \)
13 \( 1 + 85.6T + 2.19e3T^{2} \)
17 \( 1 + 67.9T + 4.91e3T^{2} \)
19 \( 1 + 63.3T + 6.85e3T^{2} \)
23 \( 1 - 139.T + 1.21e4T^{2} \)
31 \( 1 + 170.T + 2.97e4T^{2} \)
37 \( 1 - 405.T + 5.06e4T^{2} \)
41 \( 1 + 447.T + 6.89e4T^{2} \)
43 \( 1 + 407.T + 7.95e4T^{2} \)
47 \( 1 - 178.T + 1.03e5T^{2} \)
53 \( 1 + 93.3T + 1.48e5T^{2} \)
59 \( 1 - 279.T + 2.05e5T^{2} \)
61 \( 1 + 793.T + 2.26e5T^{2} \)
67 \( 1 + 460.T + 3.00e5T^{2} \)
71 \( 1 - 803.T + 3.57e5T^{2} \)
73 \( 1 - 150.T + 3.89e5T^{2} \)
79 \( 1 + 313.T + 4.93e5T^{2} \)
83 \( 1 + 250.T + 5.71e5T^{2} \)
89 \( 1 + 97.2T + 7.04e5T^{2} \)
97 \( 1 - 1.34e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.786568850833090631822600559298, −7.913850235727991062890264366939, −7.08778118511899735922486933055, −6.26916578129936983006817897178, −5.12874031946229942397197209275, −4.90034503301860996241850162277, −4.15358857463406538588547531104, −2.92353665686188288148102104664, −1.82030909306106183479348907670, −0.38399695828922064251396769239, 0.38399695828922064251396769239, 1.82030909306106183479348907670, 2.92353665686188288148102104664, 4.15358857463406538588547531104, 4.90034503301860996241850162277, 5.12874031946229942397197209275, 6.26916578129936983006817897178, 7.08778118511899735922486933055, 7.913850235727991062890264366939, 8.786568850833090631822600559298

Graph of the $Z$-function along the critical line