Properties

Label 2-2175-1.1-c3-0-193
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.12·2-s − 3·3-s + 18.2·4-s − 15.3·6-s + 21.7·7-s + 52.5·8-s + 9·9-s + 57.1·11-s − 54.7·12-s + 41.2·13-s + 111.·14-s + 123.·16-s − 73.0·17-s + 46.1·18-s − 0.658·19-s − 65.2·21-s + 292.·22-s + 96.1·23-s − 157.·24-s + 211.·26-s − 27·27-s + 397.·28-s − 29·29-s − 2.01·31-s + 210.·32-s − 171.·33-s − 374.·34-s + ⋯
L(s)  = 1  + 1.81·2-s − 0.577·3-s + 2.28·4-s − 1.04·6-s + 1.17·7-s + 2.32·8-s + 0.333·9-s + 1.56·11-s − 1.31·12-s + 0.879·13-s + 2.12·14-s + 1.92·16-s − 1.04·17-s + 0.603·18-s − 0.00795·19-s − 0.678·21-s + 2.83·22-s + 0.871·23-s − 1.34·24-s + 1.59·26-s − 0.192·27-s + 2.68·28-s − 0.185·29-s − 0.0116·31-s + 1.16·32-s − 0.904·33-s − 1.88·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.673669571\)
\(L(\frac12)\) \(\approx\) \(8.673669571\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 + 29T \)
good2 \( 1 - 5.12T + 8T^{2} \)
7 \( 1 - 21.7T + 343T^{2} \)
11 \( 1 - 57.1T + 1.33e3T^{2} \)
13 \( 1 - 41.2T + 2.19e3T^{2} \)
17 \( 1 + 73.0T + 4.91e3T^{2} \)
19 \( 1 + 0.658T + 6.85e3T^{2} \)
23 \( 1 - 96.1T + 1.21e4T^{2} \)
31 \( 1 + 2.01T + 2.97e4T^{2} \)
37 \( 1 - 315.T + 5.06e4T^{2} \)
41 \( 1 - 219.T + 6.89e4T^{2} \)
43 \( 1 + 81.2T + 7.95e4T^{2} \)
47 \( 1 + 440.T + 1.03e5T^{2} \)
53 \( 1 + 65.8T + 1.48e5T^{2} \)
59 \( 1 + 551.T + 2.05e5T^{2} \)
61 \( 1 + 149.T + 2.26e5T^{2} \)
67 \( 1 - 888.T + 3.00e5T^{2} \)
71 \( 1 + 570.T + 3.57e5T^{2} \)
73 \( 1 + 664.T + 3.89e5T^{2} \)
79 \( 1 - 221.T + 4.93e5T^{2} \)
83 \( 1 - 740.T + 5.71e5T^{2} \)
89 \( 1 + 895.T + 7.04e5T^{2} \)
97 \( 1 - 705.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.606879881577556684759855850232, −7.58822449889234311744360440161, −6.65835190754515026953282859296, −6.27271243771101128197129776538, −5.41690264561742190521818907029, −4.51574785544112407133915138280, −4.22364159672046884991834684098, −3.19064601303826508231792832493, −1.91985974012151670899477482248, −1.17434942713417367717868308659, 1.17434942713417367717868308659, 1.91985974012151670899477482248, 3.19064601303826508231792832493, 4.22364159672046884991834684098, 4.51574785544112407133915138280, 5.41690264561742190521818907029, 6.27271243771101128197129776538, 6.65835190754515026953282859296, 7.58822449889234311744360440161, 8.606879881577556684759855850232

Graph of the $Z$-function along the critical line