Properties

Label 2-2175-1.1-c3-0-130
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.42·2-s − 3·3-s + 21.4·4-s + 16.2·6-s + 10.2·7-s − 73.0·8-s + 9·9-s + 12.6·11-s − 64.3·12-s − 84.2·13-s − 55.5·14-s + 224.·16-s − 6.89·17-s − 48.8·18-s − 79.7·19-s − 30.7·21-s − 68.5·22-s + 73.8·23-s + 219.·24-s + 457.·26-s − 27·27-s + 219.·28-s + 29·29-s + 0.254·31-s − 635.·32-s − 37.8·33-s + 37.4·34-s + ⋯
L(s)  = 1  − 1.91·2-s − 0.577·3-s + 2.68·4-s + 1.10·6-s + 0.552·7-s − 3.22·8-s + 0.333·9-s + 0.346·11-s − 1.54·12-s − 1.79·13-s − 1.06·14-s + 3.51·16-s − 0.0983·17-s − 0.639·18-s − 0.962·19-s − 0.319·21-s − 0.664·22-s + 0.669·23-s + 1.86·24-s + 3.44·26-s − 0.192·27-s + 1.48·28-s + 0.185·29-s + 0.00147·31-s − 3.50·32-s − 0.199·33-s + 0.188·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 - 29T \)
good2 \( 1 + 5.42T + 8T^{2} \)
7 \( 1 - 10.2T + 343T^{2} \)
11 \( 1 - 12.6T + 1.33e3T^{2} \)
13 \( 1 + 84.2T + 2.19e3T^{2} \)
17 \( 1 + 6.89T + 4.91e3T^{2} \)
19 \( 1 + 79.7T + 6.85e3T^{2} \)
23 \( 1 - 73.8T + 1.21e4T^{2} \)
31 \( 1 - 0.254T + 2.97e4T^{2} \)
37 \( 1 + 40.4T + 5.06e4T^{2} \)
41 \( 1 - 208.T + 6.89e4T^{2} \)
43 \( 1 - 194.T + 7.95e4T^{2} \)
47 \( 1 - 522.T + 1.03e5T^{2} \)
53 \( 1 - 294.T + 1.48e5T^{2} \)
59 \( 1 + 196.T + 2.05e5T^{2} \)
61 \( 1 - 189.T + 2.26e5T^{2} \)
67 \( 1 - 570.T + 3.00e5T^{2} \)
71 \( 1 + 1.12e3T + 3.57e5T^{2} \)
73 \( 1 + 581.T + 3.89e5T^{2} \)
79 \( 1 + 255.T + 4.93e5T^{2} \)
83 \( 1 - 983.T + 5.71e5T^{2} \)
89 \( 1 - 678.T + 7.04e5T^{2} \)
97 \( 1 - 30.8T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.418937203739612021135927028249, −7.55253070829367460581127045146, −7.12633880512948888075913936775, −6.33328659835659915858589921485, −5.39467360992848045134459411231, −4.33457025699273684932961425694, −2.72744975553151661830918056752, −1.99582895478742579706885361553, −0.926431980759268176656840263903, 0, 0.926431980759268176656840263903, 1.99582895478742579706885361553, 2.72744975553151661830918056752, 4.33457025699273684932961425694, 5.39467360992848045134459411231, 6.33328659835659915858589921485, 7.12633880512948888075913936775, 7.55253070829367460581127045146, 8.418937203739612021135927028249

Graph of the $Z$-function along the critical line