L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 2·6-s + 2·7-s + 9-s − 3·11-s − 2·12-s − 4·13-s + 4·14-s − 4·16-s − 8·17-s + 2·18-s − 2·21-s − 6·22-s + 23-s − 8·26-s − 27-s + 4·28-s + 29-s − 8·31-s − 8·32-s + 3·33-s − 16·34-s + 2·36-s + 7·37-s + 4·39-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 0.755·7-s + 1/3·9-s − 0.904·11-s − 0.577·12-s − 1.10·13-s + 1.06·14-s − 16-s − 1.94·17-s + 0.471·18-s − 0.436·21-s − 1.27·22-s + 0.208·23-s − 1.56·26-s − 0.192·27-s + 0.755·28-s + 0.185·29-s − 1.43·31-s − 1.41·32-s + 0.522·33-s − 2.74·34-s + 1/3·36-s + 1.15·37-s + 0.640·39-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1−pT+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+8T+pT2 |
| 19 | 1+pT2 |
| 23 | 1−T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1−7T+pT2 |
| 43 | 1+9T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+9T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1+9T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+13T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.663003477671988172128411423907, −7.57267794450033413725994868187, −6.94741208393912926694336652961, −6.03449239221672116236167058426, −5.28269572114788096995193818073, −4.68654456311297527430440074459, −4.15797257967427379453563556870, −2.79373927165665359734182776318, −2.04532514368342061778964974779, 0,
2.04532514368342061778964974779, 2.79373927165665359734182776318, 4.15797257967427379453563556870, 4.68654456311297527430440074459, 5.28269572114788096995193818073, 6.03449239221672116236167058426, 6.94741208393912926694336652961, 7.57267794450033413725994868187, 8.663003477671988172128411423907