Properties

Label 2-2175-1.1-c1-0-84
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 2·6-s + 2·7-s + 9-s − 3·11-s − 2·12-s − 4·13-s + 4·14-s − 4·16-s − 8·17-s + 2·18-s − 2·21-s − 6·22-s + 23-s − 8·26-s − 27-s + 4·28-s + 29-s − 8·31-s − 8·32-s + 3·33-s − 16·34-s + 2·36-s + 7·37-s + 4·39-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 0.755·7-s + 1/3·9-s − 0.904·11-s − 0.577·12-s − 1.10·13-s + 1.06·14-s − 16-s − 1.94·17-s + 0.471·18-s − 0.436·21-s − 1.27·22-s + 0.208·23-s − 1.56·26-s − 0.192·27-s + 0.755·28-s + 0.185·29-s − 1.43·31-s − 1.41·32-s + 0.522·33-s − 2.74·34-s + 1/3·36-s + 1.15·37-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.663003477671988172128411423907, −7.57267794450033413725994868187, −6.94741208393912926694336652961, −6.03449239221672116236167058426, −5.28269572114788096995193818073, −4.68654456311297527430440074459, −4.15797257967427379453563556870, −2.79373927165665359734182776318, −2.04532514368342061778964974779, 0, 2.04532514368342061778964974779, 2.79373927165665359734182776318, 4.15797257967427379453563556870, 4.68654456311297527430440074459, 5.28269572114788096995193818073, 6.03449239221672116236167058426, 6.94741208393912926694336652961, 7.57267794450033413725994868187, 8.663003477671988172128411423907

Graph of the $Z$-function along the critical line