Properties

Label 2-2175-1.1-c1-0-72
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.16·2-s + 3-s + 2.68·4-s + 2.16·6-s + 4.84·7-s + 1.48·8-s + 9-s + 3·11-s + 2.68·12-s − 0.519·13-s + 10.4·14-s − 2.16·16-s + 2.84·17-s + 2.16·18-s − 3.36·19-s + 4.84·21-s + 6.49·22-s − 6.80·23-s + 1.48·24-s − 1.12·26-s + 27-s + 13.0·28-s − 29-s − 7.64·32-s + 3·33-s + 6.16·34-s + 2.68·36-s + ⋯
L(s)  = 1  + 1.53·2-s + 0.577·3-s + 1.34·4-s + 0.883·6-s + 1.83·7-s + 0.523·8-s + 0.333·9-s + 0.904·11-s + 0.774·12-s − 0.144·13-s + 2.80·14-s − 0.541·16-s + 0.690·17-s + 0.510·18-s − 0.772·19-s + 1.05·21-s + 1.38·22-s − 1.41·23-s + 0.302·24-s − 0.220·26-s + 0.192·27-s + 2.45·28-s − 0.185·29-s − 1.35·32-s + 0.522·33-s + 1.05·34-s + 0.447·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.156766204\)
\(L(\frac12)\) \(\approx\) \(6.156766204\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 2.16T + 2T^{2} \)
7 \( 1 - 4.84T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 + 0.519T + 13T^{2} \)
17 \( 1 - 2.84T + 17T^{2} \)
19 \( 1 + 3.36T + 19T^{2} \)
23 \( 1 + 6.80T + 23T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 10.8T + 37T^{2} \)
41 \( 1 - 7.84T + 41T^{2} \)
43 \( 1 + 4.17T + 43T^{2} \)
47 \( 1 + 6.21T + 47T^{2} \)
53 \( 1 + 3.44T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 5.36T + 61T^{2} \)
67 \( 1 - 15.8T + 67T^{2} \)
71 \( 1 + 14.9T + 71T^{2} \)
73 \( 1 + 8.58T + 73T^{2} \)
79 \( 1 + 1.59T + 79T^{2} \)
83 \( 1 - 6.48T + 83T^{2} \)
89 \( 1 - 14.4T + 89T^{2} \)
97 \( 1 + 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.813972663522099571633282197018, −8.246182014506372122085848519962, −7.43359338397312066616692158129, −6.56543446671410866068438699800, −5.63238044193880760565239356134, −4.92866357742522007968505500261, −4.16522623648030700895794611962, −3.61887807605568899539985127213, −2.30807327490443991618095563779, −1.60053996753598117862128092774, 1.60053996753598117862128092774, 2.30807327490443991618095563779, 3.61887807605568899539985127213, 4.16522623648030700895794611962, 4.92866357742522007968505500261, 5.63238044193880760565239356134, 6.56543446671410866068438699800, 7.43359338397312066616692158129, 8.246182014506372122085848519962, 8.813972663522099571633282197018

Graph of the $Z$-function along the critical line