Properties

Label 2-2175-1.1-c1-0-7
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.64·2-s − 3-s + 0.718·4-s + 1.64·6-s − 1.44·7-s + 2.11·8-s + 9-s + 0.191·11-s − 0.718·12-s − 5.14·13-s + 2.37·14-s − 4.92·16-s + 3.58·17-s − 1.64·18-s + 7.84·19-s + 1.44·21-s − 0.315·22-s − 7.39·23-s − 2.11·24-s + 8.48·26-s − 27-s − 1.03·28-s + 29-s − 7.18·31-s + 3.88·32-s − 0.191·33-s − 5.90·34-s + ⋯
L(s)  = 1  − 1.16·2-s − 0.577·3-s + 0.359·4-s + 0.673·6-s − 0.544·7-s + 0.746·8-s + 0.333·9-s + 0.0576·11-s − 0.207·12-s − 1.42·13-s + 0.635·14-s − 1.23·16-s + 0.869·17-s − 0.388·18-s + 1.80·19-s + 0.314·21-s − 0.0672·22-s − 1.54·23-s − 0.431·24-s + 1.66·26-s − 0.192·27-s − 0.195·28-s + 0.185·29-s − 1.29·31-s + 0.687·32-s − 0.0332·33-s − 1.01·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4827978145\)
\(L(\frac12)\) \(\approx\) \(0.4827978145\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 1.64T + 2T^{2} \)
7 \( 1 + 1.44T + 7T^{2} \)
11 \( 1 - 0.191T + 11T^{2} \)
13 \( 1 + 5.14T + 13T^{2} \)
17 \( 1 - 3.58T + 17T^{2} \)
19 \( 1 - 7.84T + 19T^{2} \)
23 \( 1 + 7.39T + 23T^{2} \)
31 \( 1 + 7.18T + 31T^{2} \)
37 \( 1 - 8.70T + 37T^{2} \)
41 \( 1 - 2.33T + 41T^{2} \)
43 \( 1 - 3.67T + 43T^{2} \)
47 \( 1 + 9.52T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 14.2T + 59T^{2} \)
61 \( 1 - 8.45T + 61T^{2} \)
67 \( 1 + 9.96T + 67T^{2} \)
71 \( 1 + 4.72T + 71T^{2} \)
73 \( 1 - 9.06T + 73T^{2} \)
79 \( 1 + 8.78T + 79T^{2} \)
83 \( 1 + 15.8T + 83T^{2} \)
89 \( 1 + 11.6T + 89T^{2} \)
97 \( 1 - 9.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.409590795301012141403926640535, −8.219734998988752636574827333460, −7.54836464253465057287720286816, −7.10045181058122359229682942546, −5.96169586029042691433341179440, −5.20293871628753033906838984968, −4.28043465467541760506844085576, −3.09276178305079768419663398661, −1.79080821953127293385960464746, −0.56006473139472308493909671056, 0.56006473139472308493909671056, 1.79080821953127293385960464746, 3.09276178305079768419663398661, 4.28043465467541760506844085576, 5.20293871628753033906838984968, 5.96169586029042691433341179440, 7.10045181058122359229682942546, 7.54836464253465057287720286816, 8.219734998988752636574827333460, 9.409590795301012141403926640535

Graph of the $Z$-function along the critical line