Properties

Label 2-2175-1.1-c1-0-52
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s + 6-s + 2·7-s + 3·8-s + 9-s + 12-s − 4·13-s − 2·14-s − 16-s − 2·17-s − 18-s − 2·21-s − 2·23-s − 3·24-s + 4·26-s − 27-s − 2·28-s + 29-s + 4·31-s − 5·32-s + 2·34-s − 36-s − 2·37-s + 4·39-s + 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.408·6-s + 0.755·7-s + 1.06·8-s + 1/3·9-s + 0.288·12-s − 1.10·13-s − 0.534·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.436·21-s − 0.417·23-s − 0.612·24-s + 0.784·26-s − 0.192·27-s − 0.377·28-s + 0.185·29-s + 0.718·31-s − 0.883·32-s + 0.342·34-s − 1/6·36-s − 0.328·37-s + 0.640·39-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.693673905877768281354694093613, −7.938558467480015624601923874544, −7.36032983033591685467342280674, −6.42968104843145663951320739990, −5.31539983467840359135097646602, −4.74266370839170039373555185594, −4.01594438426739229276737033711, −2.43360183743919969020737882343, −1.28767289236790541838025522846, 0, 1.28767289236790541838025522846, 2.43360183743919969020737882343, 4.01594438426739229276737033711, 4.74266370839170039373555185594, 5.31539983467840359135097646602, 6.42968104843145663951320739990, 7.36032983033591685467342280674, 7.938558467480015624601923874544, 8.693673905877768281354694093613

Graph of the $Z$-function along the critical line