Properties

Label 2-2175-1.1-c1-0-51
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.51·2-s − 3-s + 4.34·4-s + 2.51·6-s − 0.173·7-s − 5.90·8-s + 9-s + 5.08·11-s − 4.34·12-s − 1.82·13-s + 0.436·14-s + 6.19·16-s + 4.24·17-s − 2.51·18-s − 8.62·19-s + 0.173·21-s − 12.8·22-s − 3.16·23-s + 5.90·24-s + 4.60·26-s − 27-s − 0.753·28-s + 29-s + 3.22·31-s − 3.78·32-s − 5.08·33-s − 10.6·34-s + ⋯
L(s)  = 1  − 1.78·2-s − 0.577·3-s + 2.17·4-s + 1.02·6-s − 0.0655·7-s − 2.08·8-s + 0.333·9-s + 1.53·11-s − 1.25·12-s − 0.506·13-s + 0.116·14-s + 1.54·16-s + 1.02·17-s − 0.593·18-s − 1.97·19-s + 0.0378·21-s − 2.72·22-s − 0.659·23-s + 1.20·24-s + 0.902·26-s − 0.192·27-s − 0.142·28-s + 0.185·29-s + 0.578·31-s − 0.669·32-s − 0.884·33-s − 1.83·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.51T + 2T^{2} \)
7 \( 1 + 0.173T + 7T^{2} \)
11 \( 1 - 5.08T + 11T^{2} \)
13 \( 1 + 1.82T + 13T^{2} \)
17 \( 1 - 4.24T + 17T^{2} \)
19 \( 1 + 8.62T + 19T^{2} \)
23 \( 1 + 3.16T + 23T^{2} \)
31 \( 1 - 3.22T + 31T^{2} \)
37 \( 1 + 1.97T + 37T^{2} \)
41 \( 1 + 9.96T + 41T^{2} \)
43 \( 1 + 7.91T + 43T^{2} \)
47 \( 1 - 8.66T + 47T^{2} \)
53 \( 1 + 5.40T + 53T^{2} \)
59 \( 1 - 7.66T + 59T^{2} \)
61 \( 1 - 2.76T + 61T^{2} \)
67 \( 1 + 8.13T + 67T^{2} \)
71 \( 1 + 6.25T + 71T^{2} \)
73 \( 1 - 6.74T + 73T^{2} \)
79 \( 1 - 4.54T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 + 2.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.634289428123115981019371274873, −8.188114274881213956221648721078, −7.14982176866421071439925990887, −6.57881900002486994031333451663, −6.01355311778597859270131890359, −4.67338120914734568974097030334, −3.56343859013510770513136402419, −2.14254364341070777381892870074, −1.28165043048159175423304649322, 0, 1.28165043048159175423304649322, 2.14254364341070777381892870074, 3.56343859013510770513136402419, 4.67338120914734568974097030334, 6.01355311778597859270131890359, 6.57881900002486994031333451663, 7.14982176866421071439925990887, 8.188114274881213956221648721078, 8.634289428123115981019371274873

Graph of the $Z$-function along the critical line