Properties

Label 2-2175-1.1-c1-0-30
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 2·7-s − 3·8-s + 9-s − 12-s + 4·13-s − 2·14-s − 16-s + 2·17-s + 18-s − 2·21-s + 2·23-s − 3·24-s + 4·26-s + 27-s + 2·28-s + 29-s + 4·31-s + 5·32-s + 2·34-s − 36-s + 2·37-s + 4·39-s + 10·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 0.755·7-s − 1.06·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 0.534·14-s − 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.436·21-s + 0.417·23-s − 0.612·24-s + 0.784·26-s + 0.192·27-s + 0.377·28-s + 0.185·29-s + 0.718·31-s + 0.883·32-s + 0.342·34-s − 1/6·36-s + 0.328·37-s + 0.640·39-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.467120779\)
\(L(\frac12)\) \(\approx\) \(2.467120779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.114852618054563465821353186771, −8.387008201431441682881846943026, −7.59314204149149412672584087664, −6.45430682050338011410066057313, −5.95852865236600367283969632531, −4.95087431615396366553514083223, −4.03245424163267273637349765131, −3.41156757387931472098282364681, −2.60117546246148705775401049178, −0.928804870228053909603643886571, 0.928804870228053909603643886571, 2.60117546246148705775401049178, 3.41156757387931472098282364681, 4.03245424163267273637349765131, 4.95087431615396366553514083223, 5.95852865236600367283969632531, 6.45430682050338011410066057313, 7.59314204149149412672584087664, 8.387008201431441682881846943026, 9.114852618054563465821353186771

Graph of the $Z$-function along the critical line