Properties

Label 2-2166-1.1-c1-0-5
Degree $2$
Conductor $2166$
Sign $1$
Analytic cond. $17.2955$
Root an. cond. $4.15879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 4·7-s − 8-s + 9-s − 12-s + 4·13-s + 4·14-s + 16-s + 6·17-s − 18-s + 4·21-s − 6·23-s + 24-s − 5·25-s − 4·26-s − 27-s − 4·28-s − 6·29-s − 2·31-s − 32-s − 6·34-s + 36-s + 4·37-s − 4·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s + 1.06·14-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.872·21-s − 1.25·23-s + 0.204·24-s − 25-s − 0.784·26-s − 0.192·27-s − 0.755·28-s − 1.11·29-s − 0.359·31-s − 0.176·32-s − 1.02·34-s + 1/6·36-s + 0.657·37-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2166 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2166 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2166\)    =    \(2 \cdot 3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(17.2955\)
Root analytic conductor: \(4.15879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2166} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2166,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7079648619\)
\(L(\frac12)\) \(\approx\) \(0.7079648619\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.259640558821885075068908771795, −8.286384627590355256677817927703, −7.55115786695816520855805315822, −6.68048915127927837981186032967, −5.99408682820686103023132488037, −5.52310079772540467707832315072, −3.85774434155809618478109209426, −3.38136823890594312411975627313, −1.95377788914540392982009269037, −0.61960001960809225980571440734, 0.61960001960809225980571440734, 1.95377788914540392982009269037, 3.38136823890594312411975627313, 3.85774434155809618478109209426, 5.52310079772540467707832315072, 5.99408682820686103023132488037, 6.68048915127927837981186032967, 7.55115786695816520855805315822, 8.286384627590355256677817927703, 9.259640558821885075068908771795

Graph of the $Z$-function along the critical line