L(s) = 1 | + (1.93 + 1.11i)5-s + (1.87 + 3.24i)7-s + (−10.1 + 5.84i)11-s + (1.12 − 1.95i)13-s − 11.6i·17-s + 26.7·19-s + (−17.2 − 9.95i)23-s + (2.5 + 4.33i)25-s + (38.2 − 22.0i)29-s + (−26.1 + 45.2i)31-s + 8.37i·35-s + 14·37-s + (22.5 + 12.9i)41-s + (20.9 + 36.3i)43-s + (39.3 − 22.7i)47-s + ⋯ |
L(s) = 1 | + (0.387 + 0.223i)5-s + (0.267 + 0.463i)7-s + (−0.919 + 0.531i)11-s + (0.0866 − 0.150i)13-s − 0.687i·17-s + 1.40·19-s + (−0.749 − 0.432i)23-s + (0.100 + 0.173i)25-s + (1.31 − 0.761i)29-s + (−0.842 + 1.45i)31-s + 0.239i·35-s + 0.378·37-s + (0.548 + 0.316i)41-s + (0.488 + 0.845i)43-s + (0.837 − 0.483i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.013754265\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.013754265\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.93 - 1.11i)T \) |
good | 7 | \( 1 + (-1.87 - 3.24i)T + (-24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (10.1 - 5.84i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-1.12 + 1.95i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 11.6iT - 289T^{2} \) |
| 19 | \( 1 - 26.7T + 361T^{2} \) |
| 23 | \( 1 + (17.2 + 9.95i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-38.2 + 22.0i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (26.1 - 45.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 14T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-22.5 - 12.9i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-20.9 - 36.3i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-39.3 + 22.7i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 10.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (31.8 + 18.4i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-22.6 - 39.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (49.9 - 86.5i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 102. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 13.7T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-28.3 - 49.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (78 - 45.0i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 95.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-50.8 - 88.0i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.073693993605804415023906060774, −8.234640624770566776679773852300, −7.50399674207900932491174321103, −6.78658686295519850274478152402, −5.70671187419513817706726543896, −5.21458186493688662759400567399, −4.28087313414391594029167260304, −2.95566761813608632407561024938, −2.37554572481287018688972237516, −1.05029815419755575348635292947,
0.56399570451897981737189089946, 1.70210117489154571244647799554, 2.83693312245337143217560867850, 3.81902219545204855343213895485, 4.77185458418120338753507080011, 5.64331975652631695699335635138, 6.19059065796740037700908590705, 7.49967824749738032436985576389, 7.76889661500876629379041815086, 8.797717051214860448729962659732