Properties

Label 2-2160-5.4-c1-0-40
Degree $2$
Conductor $2160$
Sign $-0.223 + 0.974i$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.17 + 0.5i)5-s − 4.35i·7-s − 4.35·11-s − 4i·17-s + 6·19-s + 2i·23-s + (4.50 + 2.17i)25-s − 7·31-s + (2.17 − 9.50i)35-s − 8.71i·37-s − 8.71·41-s − 8.71i·43-s + 2i·47-s − 12.0·49-s − 3i·53-s + ⋯
L(s)  = 1  + (0.974 + 0.223i)5-s − 1.64i·7-s − 1.31·11-s − 0.970i·17-s + 1.37·19-s + 0.417i·23-s + (0.900 + 0.435i)25-s − 1.25·31-s + (0.368 − 1.60i)35-s − 1.43i·37-s − 1.36·41-s − 1.32i·43-s + 0.291i·47-s − 1.71·49-s − 0.412i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.223 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-0.223 + 0.974i$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ -0.223 + 0.974i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.617878671\)
\(L(\frac12)\) \(\approx\) \(1.617878671\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-2.17 - 0.5i)T \)
good7 \( 1 + 4.35iT - 7T^{2} \)
11 \( 1 + 4.35T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 7T + 31T^{2} \)
37 \( 1 + 8.71iT - 37T^{2} \)
41 \( 1 + 8.71T + 41T^{2} \)
43 \( 1 + 8.71iT - 43T^{2} \)
47 \( 1 - 2iT - 47T^{2} \)
53 \( 1 + 3iT - 53T^{2} \)
59 \( 1 - 8.71T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 + 8.71iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 4.35iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 5iT - 83T^{2} \)
89 \( 1 - 8.71T + 89T^{2} \)
97 \( 1 + 4.35iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.061287338584154406616475835429, −7.76800752232354340969992335945, −7.35004437476871214801496744744, −6.70400955932220577077470496976, −5.40009491695299035049301584719, −5.14456478140879043960075343130, −3.81824299601216125343276134828, −2.99464306180405638829342923747, −1.83559711184905792660262808855, −0.54005133197055822449885771424, 1.56666601207922982139473079595, 2.48755056635725276733944794371, 3.20200839323780844130701654935, 4.82326152430334220606221475055, 5.45132019166679165909671016355, 5.88486428964193287050253707565, 6.82973405831949292375592684731, 8.005079568466973848509156008449, 8.534251404105805207297021292054, 9.298046256651684301103594103745

Graph of the $Z$-function along the critical line