L(s) = 1 | + (2.17 + 0.5i)5-s − 4.35i·7-s − 4.35·11-s − 4i·17-s + 6·19-s + 2i·23-s + (4.50 + 2.17i)25-s − 7·31-s + (2.17 − 9.50i)35-s − 8.71i·37-s − 8.71·41-s − 8.71i·43-s + 2i·47-s − 12.0·49-s − 3i·53-s + ⋯ |
L(s) = 1 | + (0.974 + 0.223i)5-s − 1.64i·7-s − 1.31·11-s − 0.970i·17-s + 1.37·19-s + 0.417i·23-s + (0.900 + 0.435i)25-s − 1.25·31-s + (0.368 − 1.60i)35-s − 1.43i·37-s − 1.36·41-s − 1.32i·43-s + 0.291i·47-s − 1.71·49-s − 0.412i·53-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.223+0.974i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(−0.223+0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.223+0.974i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1729,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), −0.223+0.974i)
|
Particular Values
L(1) |
≈ |
1.617878671 |
L(21) |
≈ |
1.617878671 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−2.17−0.5i)T |
good | 7 | 1+4.35iT−7T2 |
| 11 | 1+4.35T+11T2 |
| 13 | 1−13T2 |
| 17 | 1+4iT−17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1+7T+31T2 |
| 37 | 1+8.71iT−37T2 |
| 41 | 1+8.71T+41T2 |
| 43 | 1+8.71iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1+3iT−53T2 |
| 59 | 1−8.71T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+8.71iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+4.35iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−5iT−83T2 |
| 89 | 1−8.71T+89T2 |
| 97 | 1+4.35iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.061287338584154406616475835429, −7.76800752232354340969992335945, −7.35004437476871214801496744744, −6.70400955932220577077470496976, −5.40009491695299035049301584719, −5.14456478140879043960075343130, −3.81824299601216125343276134828, −2.99464306180405638829342923747, −1.83559711184905792660262808855, −0.54005133197055822449885771424,
1.56666601207922982139473079595, 2.48755056635725276733944794371, 3.20200839323780844130701654935, 4.82326152430334220606221475055, 5.45132019166679165909671016355, 5.88486428964193287050253707565, 6.82973405831949292375592684731, 8.005079568466973848509156008449, 8.534251404105805207297021292054, 9.298046256651684301103594103745