L(s) = 1 | + 2.23·5-s − 7.74i·7-s + 6.92i·11-s + 22·13-s − 6.70·17-s − 27.1i·19-s − 29.4i·23-s + 5.00·25-s − 40.2·29-s + 19.3i·31-s − 17.3i·35-s + 2·37-s + 53.6·41-s − 15.4i·43-s + 13.8i·47-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.10i·7-s + 0.629i·11-s + 1.69·13-s − 0.394·17-s − 1.42i·19-s − 1.28i·23-s + 0.200·25-s − 1.38·29-s + 0.624i·31-s − 0.494i·35-s + 0.0540·37-s + 1.30·41-s − 0.360i·43-s + 0.294i·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)iΛ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), i)
|
Particular Values
L(23) |
≈ |
2.097950536 |
L(21) |
≈ |
2.097950536 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−2.23T |
good | 7 | 1+7.74iT−49T2 |
| 11 | 1−6.92iT−121T2 |
| 13 | 1−22T+169T2 |
| 17 | 1+6.70T+289T2 |
| 19 | 1+27.1iT−361T2 |
| 23 | 1+29.4iT−529T2 |
| 29 | 1+40.2T+841T2 |
| 31 | 1−19.3iT−961T2 |
| 37 | 1−2T+1.36e3T2 |
| 41 | 1−53.6T+1.68e3T2 |
| 43 | 1+15.4iT−1.84e3T2 |
| 47 | 1−13.8iT−2.20e3T2 |
| 53 | 1+6.70T+2.80e3T2 |
| 59 | 1+24.2iT−3.48e3T2 |
| 61 | 1+31T+3.72e3T2 |
| 67 | 1+23.2iT−4.48e3T2 |
| 71 | 1−110.iT−5.04e3T2 |
| 73 | 1−76T+5.32e3T2 |
| 79 | 1+19.3iT−6.24e3T2 |
| 83 | 1+129.iT−6.88e3T2 |
| 89 | 1+53.6T+7.92e3T2 |
| 97 | 1+32T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.830173435745243727517795151459, −7.903207198052495371726304631950, −6.99047278180165918126537386472, −6.53081256663946218857263983431, −5.55999800126947305266471731331, −4.50289393042389497749177703367, −3.92465945451352093478958912425, −2.76823742969333761932864280262, −1.59680169695039543470418274483, −0.54245034668820873482215305507,
1.25561480993411243329743980707, 2.16377751141339772657054805243, 3.34257168041660878304482728432, 4.03423783065252859800427068087, 5.59331053482706433376081585094, 5.72279026492969566119567566357, 6.48531317644886442151920960884, 7.75258800922781567141771680335, 8.344773695375295859534147041636, 9.175919213427991534650467254371