Properties

Label 2-2160-4.3-c2-0-54
Degree $2$
Conductor $2160$
Sign $i$
Analytic cond. $58.8557$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·5-s − 7.74i·7-s + 6.92i·11-s + 22·13-s − 6.70·17-s − 27.1i·19-s − 29.4i·23-s + 5.00·25-s − 40.2·29-s + 19.3i·31-s − 17.3i·35-s + 2·37-s + 53.6·41-s − 15.4i·43-s + 13.8i·47-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.10i·7-s + 0.629i·11-s + 1.69·13-s − 0.394·17-s − 1.42i·19-s − 1.28i·23-s + 0.200·25-s − 1.38·29-s + 0.624i·31-s − 0.494i·35-s + 0.0540·37-s + 1.30·41-s − 0.360i·43-s + 0.294i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $i$
Analytic conductor: \(58.8557\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (271, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.097950536\)
\(L(\frac12)\) \(\approx\) \(2.097950536\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 2.23T \)
good7 \( 1 + 7.74iT - 49T^{2} \)
11 \( 1 - 6.92iT - 121T^{2} \)
13 \( 1 - 22T + 169T^{2} \)
17 \( 1 + 6.70T + 289T^{2} \)
19 \( 1 + 27.1iT - 361T^{2} \)
23 \( 1 + 29.4iT - 529T^{2} \)
29 \( 1 + 40.2T + 841T^{2} \)
31 \( 1 - 19.3iT - 961T^{2} \)
37 \( 1 - 2T + 1.36e3T^{2} \)
41 \( 1 - 53.6T + 1.68e3T^{2} \)
43 \( 1 + 15.4iT - 1.84e3T^{2} \)
47 \( 1 - 13.8iT - 2.20e3T^{2} \)
53 \( 1 + 6.70T + 2.80e3T^{2} \)
59 \( 1 + 24.2iT - 3.48e3T^{2} \)
61 \( 1 + 31T + 3.72e3T^{2} \)
67 \( 1 + 23.2iT - 4.48e3T^{2} \)
71 \( 1 - 110. iT - 5.04e3T^{2} \)
73 \( 1 - 76T + 5.32e3T^{2} \)
79 \( 1 + 19.3iT - 6.24e3T^{2} \)
83 \( 1 + 129. iT - 6.88e3T^{2} \)
89 \( 1 + 53.6T + 7.92e3T^{2} \)
97 \( 1 + 32T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.830173435745243727517795151459, −7.903207198052495371726304631950, −6.99047278180165918126537386472, −6.53081256663946218857263983431, −5.55999800126947305266471731331, −4.50289393042389497749177703367, −3.92465945451352093478958912425, −2.76823742969333761932864280262, −1.59680169695039543470418274483, −0.54245034668820873482215305507, 1.25561480993411243329743980707, 2.16377751141339772657054805243, 3.34257168041660878304482728432, 4.03423783065252859800427068087, 5.59331053482706433376081585094, 5.72279026492969566119567566357, 6.48531317644886442151920960884, 7.75258800922781567141771680335, 8.344773695375295859534147041636, 9.175919213427991534650467254371

Graph of the $Z$-function along the critical line