| L(s)  = 1 | + (−0.258 − 0.965i)2-s     + (−0.866 + 0.499i)4-s   + (−0.707 − 0.707i)5-s       + (0.707 + 0.707i)8-s     + (−0.500 + 0.866i)10-s             + (0.500 − 0.866i)16-s   − 1.93·17-s     + (−0.366 + 0.366i)19-s   + (0.965 + 0.258i)20-s       − 1.93i·23-s     + 1.00i·25-s             − 1.73·31-s   + (−0.965 − 0.258i)32-s     + (0.499 + 1.86i)34-s         + (0.448 + 0.258i)38-s    + ⋯ | 
| L(s)  = 1 | + (−0.258 − 0.965i)2-s     + (−0.866 + 0.499i)4-s   + (−0.707 − 0.707i)5-s       + (0.707 + 0.707i)8-s     + (−0.500 + 0.866i)10-s             + (0.500 − 0.866i)16-s   − 1.93·17-s     + (−0.366 + 0.366i)19-s   + (0.965 + 0.258i)20-s       − 1.93i·23-s     + 1.00i·25-s             − 1.73·31-s   + (−0.965 − 0.258i)32-s     + (0.499 + 1.86i)34-s         + (0.448 + 0.258i)38-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(0.1877772088\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.1877772088\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + (0.258 + 0.965i)T \) | 
|  | 3 | \( 1 \) | 
|  | 5 | \( 1 + (0.707 + 0.707i)T \) | 
| good | 7 | \( 1 + T^{2} \) | 
|  | 11 | \( 1 - iT^{2} \) | 
|  | 13 | \( 1 + iT^{2} \) | 
|  | 17 | \( 1 + 1.93T + T^{2} \) | 
|  | 19 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) | 
|  | 23 | \( 1 + 1.93iT - T^{2} \) | 
|  | 29 | \( 1 + iT^{2} \) | 
|  | 31 | \( 1 + 1.73T + T^{2} \) | 
|  | 37 | \( 1 - iT^{2} \) | 
|  | 41 | \( 1 + T^{2} \) | 
|  | 43 | \( 1 - iT^{2} \) | 
|  | 47 | \( 1 + 1.41T + T^{2} \) | 
|  | 53 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) | 
|  | 59 | \( 1 - iT^{2} \) | 
|  | 61 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) | 
|  | 67 | \( 1 + iT^{2} \) | 
|  | 71 | \( 1 + T^{2} \) | 
|  | 73 | \( 1 + T^{2} \) | 
|  | 79 | \( 1 + T + T^{2} \) | 
|  | 83 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) | 
|  | 89 | \( 1 + T^{2} \) | 
|  | 97 | \( 1 - T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.687894005667826125572206753152, −8.432658945437036359953509387603, −7.42029000348678384467239691173, −6.50841802203037545644025924211, −5.22824164434273796825583794599, −4.42055326699267940563424323546, −3.93531829538049800467284191464, −2.70753123968109366687122760993, −1.70291367149656094349483665737, −0.13946743865191874362584295474, 
1.92471852166543379741744696544, 3.40607197094563245814478633429, 4.18803425205742804271935829671, 5.07482965589896514407475055165, 6.02732242548462694280413575190, 6.90096662777749407372671659741, 7.24419114749213409134920593290, 8.146139713815036468085229734611, 8.843735818129565999537630856763, 9.535956104831781341166008958239
