L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s + 1.17i·23-s + (0.809 − 0.587i)25-s + (0.5 + 0.363i)29-s − 32-s + (0.309 + 0.951i)36-s + (−1.30 − 0.951i)37-s − 1.90i·43-s + (0.809 + 0.587i)44-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (0.309 − 0.951i)16-s − 0.999·18-s + (−0.809 + 0.587i)22-s + 1.17i·23-s + (0.809 − 0.587i)25-s + (0.5 + 0.363i)29-s − 32-s + (0.309 + 0.951i)36-s + (−1.30 − 0.951i)37-s − 1.90i·43-s + (0.809 + 0.587i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.550 + 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.550 + 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8580730275\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8580730275\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - 1.17iT - T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + 1.90iT - T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + 1.90iT - T^{2} \) |
| 71 | \( 1 + (-1.80 + 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.961099125997195414237449466080, −8.598775670412062856257815046948, −7.59164252285173283942518069785, −6.77781764619308280782987155638, −5.69859108863680616510472584177, −4.86301620328749285179896585610, −3.68779421886326975714011881879, −3.27538017577820320281930120356, −2.00892457246807112872491407194, −0.72948964842584165219139244900,
1.46071203357738568918175189611, 2.72340300795990154534901209859, 4.27812851955348525335795527446, 4.80990440759640955582840321610, 5.56205298037299800198568058221, 6.67729098221780197741524123845, 7.12591800608714391228299774248, 8.018345423731126531092063474979, 8.506552425724626378548684345989, 9.467505026928438029702706697609