Properties

Label 2-2156-1.1-c3-0-95
Degree $2$
Conductor $2156$
Sign $-1$
Analytic cond. $127.208$
Root an. cond. $11.2786$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·3-s + 5-s + 22·9-s + 11·11-s − 12·13-s + 7·15-s − 2·17-s − 82·19-s + 7·23-s − 124·25-s − 35·27-s − 102·29-s + 171·31-s + 77·33-s − 357·37-s − 84·39-s + 114·41-s − 344·43-s + 22·45-s − 96·47-s − 14·51-s − 430·53-s + 11·55-s − 574·57-s + 201·59-s + 2·61-s − 12·65-s + ⋯
L(s)  = 1  + 1.34·3-s + 0.0894·5-s + 0.814·9-s + 0.301·11-s − 0.256·13-s + 0.120·15-s − 0.0285·17-s − 0.990·19-s + 0.0634·23-s − 0.991·25-s − 0.249·27-s − 0.653·29-s + 0.990·31-s + 0.406·33-s − 1.58·37-s − 0.344·39-s + 0.434·41-s − 1.21·43-s + 0.0728·45-s − 0.297·47-s − 0.0384·51-s − 1.11·53-s + 0.0269·55-s − 1.33·57-s + 0.443·59-s + 0.00419·61-s − 0.0228·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2156\)    =    \(2^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(127.208\)
Root analytic conductor: \(11.2786\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2156,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - p T \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
5 \( 1 - T + p^{3} T^{2} \)
13 \( 1 + 12 T + p^{3} T^{2} \)
17 \( 1 + 2 T + p^{3} T^{2} \)
19 \( 1 + 82 T + p^{3} T^{2} \)
23 \( 1 - 7 T + p^{3} T^{2} \)
29 \( 1 + 102 T + p^{3} T^{2} \)
31 \( 1 - 171 T + p^{3} T^{2} \)
37 \( 1 + 357 T + p^{3} T^{2} \)
41 \( 1 - 114 T + p^{3} T^{2} \)
43 \( 1 + 8 p T + p^{3} T^{2} \)
47 \( 1 + 96 T + p^{3} T^{2} \)
53 \( 1 + 430 T + p^{3} T^{2} \)
59 \( 1 - 201 T + p^{3} T^{2} \)
61 \( 1 - 2 T + p^{3} T^{2} \)
67 \( 1 - 313 T + p^{3} T^{2} \)
71 \( 1 + 579 T + p^{3} T^{2} \)
73 \( 1 - 6 p T + p^{3} T^{2} \)
79 \( 1 - 494 T + p^{3} T^{2} \)
83 \( 1 + 748 T + p^{3} T^{2} \)
89 \( 1 + 457 T + p^{3} T^{2} \)
97 \( 1 - 1037 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.387322673613687110264131767545, −7.77440388785601454469937349856, −6.91172241680443746363745576946, −6.09081363987567309146817714538, −4.99178958205084869486885656009, −4.01640190331717340451455582142, −3.32264247744934936610371393135, −2.34951763303194471905740884651, −1.61992213615516054904280662135, 0, 1.61992213615516054904280662135, 2.34951763303194471905740884651, 3.32264247744934936610371393135, 4.01640190331717340451455582142, 4.99178958205084869486885656009, 6.09081363987567309146817714538, 6.91172241680443746363745576946, 7.77440388785601454469937349856, 8.387322673613687110264131767545

Graph of the $Z$-function along the critical line