L(s) = 1 | − 0.921·2-s − 1.15·4-s + 1.07·5-s + 3.99·7-s + 2.90·8-s − 0.991·10-s + 3.85·11-s + 1.10·13-s − 3.68·14-s − 0.370·16-s + 4.98·17-s + 6.77·19-s − 1.24·20-s − 3.55·22-s + 4.48·23-s − 3.84·25-s − 1.01·26-s − 4.60·28-s − 0.455·29-s − 0.141·31-s − 5.46·32-s − 4.58·34-s + 4.30·35-s − 5.62·37-s − 6.23·38-s + 3.12·40-s + 3.87·41-s + ⋯ |
L(s) = 1 | − 0.651·2-s − 0.575·4-s + 0.481·5-s + 1.51·7-s + 1.02·8-s − 0.313·10-s + 1.16·11-s + 0.306·13-s − 0.984·14-s − 0.0925·16-s + 1.20·17-s + 1.55·19-s − 0.277·20-s − 0.757·22-s + 0.935·23-s − 0.768·25-s − 0.199·26-s − 0.870·28-s − 0.0846·29-s − 0.0254·31-s − 0.966·32-s − 0.786·34-s + 0.727·35-s − 0.925·37-s − 1.01·38-s + 0.494·40-s + 0.605·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.744265063\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.744265063\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 239 | \( 1 - T \) |
good | 2 | \( 1 + 0.921T + 2T^{2} \) |
| 5 | \( 1 - 1.07T + 5T^{2} \) |
| 7 | \( 1 - 3.99T + 7T^{2} \) |
| 11 | \( 1 - 3.85T + 11T^{2} \) |
| 13 | \( 1 - 1.10T + 13T^{2} \) |
| 17 | \( 1 - 4.98T + 17T^{2} \) |
| 19 | \( 1 - 6.77T + 19T^{2} \) |
| 23 | \( 1 - 4.48T + 23T^{2} \) |
| 29 | \( 1 + 0.455T + 29T^{2} \) |
| 31 | \( 1 + 0.141T + 31T^{2} \) |
| 37 | \( 1 + 5.62T + 37T^{2} \) |
| 41 | \( 1 - 3.87T + 41T^{2} \) |
| 43 | \( 1 + 5.21T + 43T^{2} \) |
| 47 | \( 1 + 0.0217T + 47T^{2} \) |
| 53 | \( 1 + 8.05T + 53T^{2} \) |
| 59 | \( 1 - 14.3T + 59T^{2} \) |
| 61 | \( 1 + 13.6T + 61T^{2} \) |
| 67 | \( 1 + 8.40T + 67T^{2} \) |
| 71 | \( 1 - 1.78T + 71T^{2} \) |
| 73 | \( 1 - 8.35T + 73T^{2} \) |
| 79 | \( 1 + 16.7T + 79T^{2} \) |
| 83 | \( 1 + 3.41T + 83T^{2} \) |
| 89 | \( 1 + 7.49T + 89T^{2} \) |
| 97 | \( 1 + 9.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.119913127659218087194001354614, −8.361200628417328239113079279141, −7.72231588480390449729289178814, −7.03608064981508502603217827186, −5.70830444282544617692040281929, −5.15803053990504665638206256249, −4.29026449839101779727750542547, −3.31054067423274830970944839160, −1.60018050156410494012015757311, −1.16810420926851387049553973493,
1.16810420926851387049553973493, 1.60018050156410494012015757311, 3.31054067423274830970944839160, 4.29026449839101779727750542547, 5.15803053990504665638206256249, 5.70830444282544617692040281929, 7.03608064981508502603217827186, 7.72231588480390449729289178814, 8.361200628417328239113079279141, 9.119913127659218087194001354614