L(s) = 1 | − 1.05·2-s − 0.894·4-s − 2.87·5-s − 4.11·7-s + 3.04·8-s + 3.02·10-s + 1.17·11-s + 0.346·13-s + 4.32·14-s − 1.41·16-s + 3.26·17-s − 1.31·19-s + 2.56·20-s − 1.24·22-s + 9.10·23-s + 3.25·25-s − 0.364·26-s + 3.67·28-s + 0.639·29-s − 1.52·31-s − 4.60·32-s − 3.43·34-s + 11.8·35-s + 1.40·37-s + 1.38·38-s − 8.74·40-s + 2.17·41-s + ⋯ |
L(s) = 1 | − 0.743·2-s − 0.447·4-s − 1.28·5-s − 1.55·7-s + 1.07·8-s + 0.955·10-s + 0.355·11-s + 0.0960·13-s + 1.15·14-s − 0.353·16-s + 0.791·17-s − 0.302·19-s + 0.574·20-s − 0.264·22-s + 1.89·23-s + 0.650·25-s − 0.0714·26-s + 0.695·28-s + 0.118·29-s − 0.274·31-s − 0.813·32-s − 0.588·34-s + 1.99·35-s + 0.231·37-s + 0.225·38-s − 1.38·40-s + 0.339·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 239 | \( 1 - T \) |
good | 2 | \( 1 + 1.05T + 2T^{2} \) |
| 5 | \( 1 + 2.87T + 5T^{2} \) |
| 7 | \( 1 + 4.11T + 7T^{2} \) |
| 11 | \( 1 - 1.17T + 11T^{2} \) |
| 13 | \( 1 - 0.346T + 13T^{2} \) |
| 17 | \( 1 - 3.26T + 17T^{2} \) |
| 19 | \( 1 + 1.31T + 19T^{2} \) |
| 23 | \( 1 - 9.10T + 23T^{2} \) |
| 29 | \( 1 - 0.639T + 29T^{2} \) |
| 31 | \( 1 + 1.52T + 31T^{2} \) |
| 37 | \( 1 - 1.40T + 37T^{2} \) |
| 41 | \( 1 - 2.17T + 41T^{2} \) |
| 43 | \( 1 + 1.97T + 43T^{2} \) |
| 47 | \( 1 - 1.69T + 47T^{2} \) |
| 53 | \( 1 - 0.0493T + 53T^{2} \) |
| 59 | \( 1 + 0.806T + 59T^{2} \) |
| 61 | \( 1 + 1.25T + 61T^{2} \) |
| 67 | \( 1 - 4.01T + 67T^{2} \) |
| 71 | \( 1 + 0.361T + 71T^{2} \) |
| 73 | \( 1 + 11.9T + 73T^{2} \) |
| 79 | \( 1 - 4.27T + 79T^{2} \) |
| 83 | \( 1 + 14.0T + 83T^{2} \) |
| 89 | \( 1 - 10.6T + 89T^{2} \) |
| 97 | \( 1 + 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.823551839313660128058415371815, −7.988704420625805837686966774494, −7.26155988837478946948405094011, −6.66990928397372597442512548421, −5.51635816153041091386451572408, −4.44015031778319853542313118208, −3.68589512581740716016483647849, −2.96991051792693047461880823104, −1.05092594542681997969987050282, 0,
1.05092594542681997969987050282, 2.96991051792693047461880823104, 3.68589512581740716016483647849, 4.44015031778319853542313118208, 5.51635816153041091386451572408, 6.66990928397372597442512548421, 7.26155988837478946948405094011, 7.988704420625805837686966774494, 8.823551839313660128058415371815